Generalized relativistic hydrodynamics with a convex extension
- Author(s)
- Robert Beig, Philippe G. LeFloch
- Abstract
We propose a new model which describes relativistic hydrodynamics and generalizes the standard Euler system of isentropic perfect fluids. Remarkably, our system admits a convex extension which allows us to transform it to a symmetric hyperbolic form. This result sheds new light even on the relativistic Euler system.
- Organisation(s)
- Gravitational Physics
- External organisation(s)
- Université Paris VI - Pierre-et-Marie-Curie
- Journal
- Classical and Quantum Gravity
- Volume
- 31
- No. of pages
- 7
- ISSN
- 0264-9381
- DOI
- https://doi.org/10.1088/0264-9381/31/12/125005
- Publication date
- 06-2014
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 103019 Mathematical physics, 103036 Theoretical physics
- Keywords
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/721c084c-a418-470b-a3cd-80130c5ff170