Threshold for blowup for the supercritical cubic wave equation
- Author(s)
- Irfan Glogić, Maciej Maliborski, Birgit Schörkhuber
- Abstract
We consider the focusing cubic wave equation in the energy supercritical case, i.e. in dimensions . For this model an explicit nontrivial self-similar blowup solution was recently found by the first and third author in Glogić and Schörkhuber (2018 (arXiv:1810.07681)). Furthermore, the solution is proven to be co-dimension one stable in d = 7. In this paper, we study the equation from a numerical point of view. For d = 5 and d = 7 in the radial case, we provide evidence that this solution is at the threshold between generic ODE blowup and dispersion. In addition, we investigate the spectral problem that underlies the stability analysis and compute the spectrum in general supercritical dimensions.
- Organisation(s)
- Department of Mathematics, Gravitational Physics
- External organisation(s)
- Karlsruher Institut für Technologie
- Journal
- Nonlinearity
- Volume
- 33
- Pages
- 2143-2158
- No. of pages
- 16
- ISSN
- 0951-7715
- DOI
- https://doi.org/10.1088/1361-6544/ab6f4d
- Publication date
- 03-2020
- Peer reviewed
- Yes
- Austrian Fields of Science 2012
- 101002 Analysis, 103019 Mathematical physics
- Keywords
- ASJC Scopus subject areas
- Physics and Astronomy(all), Applied Mathematics, Statistical and Nonlinear Physics, Mathematical Physics
- Portal url
- https://ucrisportal.univie.ac.at/en/publications/threshold-for-blowup-for-the-supercritical-cubic-wave-equation(58457346-6cc0-4ec3-9f79-a5b275783c39).html