Publications in u:cris
Showing entries 61 - 80 out of 296
2022
Bizoń, P., Cownden, B., & Maliborski, M. (2022). Characteristic approach to the soliton resolution. Nonlinearity, 35(8), 4585–4598. https://doi.org/10.1088/1361-6544/ac7b04
Aichelburg, P. C. (2022). Is the equivalence principle useful for understanding general relativity? American Journal of Physics, 90(7), 538-548. https://doi.org/10.1119/10.0010106
Aichelburg, P. C., & Balasin, H. (2022). Curvature without metric: The Penrose construction for half-flat pp-waves. AVS Quantum Science, 4(2), Article 020801. https://doi.org/10.1116/5.0074308
Harte, A., & Oancea, M. A. (2022). Spin Hall effects and the localization of massless spinning particles. Physical Review D, 105(10), Article 104061. https://doi.org/10.1103/PhysRevD.105.104061
Fajman, D., & Urban, L. (2022). Blow-up of waves on singular spacetimes with generic spatial metrics. Letters in Mathematical Physics, 112(2), Article 42. https://doi.org/10.1007/s11005-022-01522-5
Cameron, P., & Chruściel, P. T. (2022). Asymptotic flatness in higher dimensions. Journal of Mathematical Physics, 63(3), Article 032501. https://doi.org/10.1063/5.0083728
Chrusciel, P. T., & Smolka, T. (2022). Hamiltonian Charges in Spacetimes with a Positive Cosmological Constant. Acta Physica Polonica B, Proceedings Supplement, 15(1), Article A11. https://doi.org/10.5506/APhysPolBSupp.15.1-A11
2021
Chrusciel, P. T., & Galloway, G. J. (2021). Positive mass theorems for asymptotically hyperbolic Riemannian manifolds with boundary. Classical and Quantum Gravity, 38(23), Article 237001. https://doi.org/10.1088/1361-6382/ac1fd1
Mieling, T. B., Chrusciel, P. T., & Palenta, S. (2021). The electromagnetic field in gravitational wave interferometers. Classical and Quantum Gravity, 38(21), Article 215004. https://doi.org/10.1088/1361-6382/ac2270
Beig, R., & Schmidt, B. G. (2021). Mechanics of floating bodies. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 477(2255), Article 20210595. https://doi.org/10.1098/rspa.2021.0595
Bigorgne, L., Fajman, D., Joudioux, J., Smulevici, J., & Thaller, M. (2021). Asymptotic Stability of Minkowski Space-Time with Non-compactly Supported Massless Vlasov Matter. Archive for Rational Mechanics and Analysis, 242(1), 1-147. https://doi.org/10.1007/s00205-021-01639-2
Mieling, T. B. (2021). The response of laser interferometric gravitational wave detectors beyond the eikonal equation. Classical and Quantum Gravity, 38(17), Article 175007. https://doi.org/10.1088/1361-6382/ac15db
Mieling, T. B. (2021). The response of optical fibres to gravitational waves. Classical and Quantum Gravity, 38(15), Article 155006. https://doi.org/10.1088/1361-6382/ac0b2f
Chruściel, P. T., Hoque, S. J., Maliborski, M., & Smołka, T. (2021). On the canonical energy of weak gravitational fields with a cosmological constant Λ∈ R. European Physical Journal C, 81(8), Article 696. https://doi.org/10.1140/epjc/s10052-021-09350-y
Fajman, D., Heissel, G., & Jang, J. W. (2021). Averaging with a time-dependent perturbation parameter. Classical and Quantum Gravity, 38(8), Article 085005. https://doi.org/10.1088/1361-6382/abe883
Fajman, D., Oliynyk, T. A., & Wyatt, Z. (2021). Stabilizing Relativistic Fluids on Spacetimes with Non-Accelerated Expansion. Communications in Mathematical Physics, 383(1), 401–426. https://doi.org/10.1007/s00220-020-03924-9
Barzegar, H. (2021). Future attractors of Bianchi types II and V cosmologies with massless Vlasov matter. Classical and Quantum Gravity, 38(6), Article 065019. https://doi.org/10.1088/1361-6382/abe49a
Chrusciel, P. T., Hoque, S. J., & Smołka, T. (2021). Energy of weak gravitational waves in spacetimes with a positive cosmological constant. Physical Review D, 103(6), Article 064008. https://doi.org/10.1103/PhysRevD.103.064008
Fajman, D., & Wyatt, Z. (2021). Attractors of the Einstein-Klein-Gordon system. Communications in Partial Differential Equations, 46(1), 1-30. https://doi.org/10.1080/03605302.2020.1817072
Chrusciel, P. T., Nguyen, L., Tod, P., & Vasy, A. (2021). Asymptotically flat Einstein-Maxwell fields are inheriting. Communications in Analysis and Geometry, 29(3), 579–627. https://doi.org/10.4310/CAG.2021.v29.n3.a2
Showing entries 61 - 80 out of 296
