1 Schwarzschild: Orders of magnitude

Calculate the deviation of the component g_{00} of a Schwarzschild metric from minus one, as well as the deviation of $\partial_i g_{00}$ from zero, a) at the surface of the sun when *m* is the mass of the sun, b) at the orbit of the earth when *m* is the mass of the sun, c) at the surface of the earth when *m* is the mass of the earth, d) at the orbit of the moon when *m* is the mass of the earth, and e) at the surface of the moon when *m* is the mass of the moon.

2 Symmetries of the curvature tensor

i. What does it mean for a connection ∇ on a space-time with metric g_{ab} to be (a) a *metric connection*, (b) *torsion free*?

Assume henceforth that ∇ is torsion free.

(c) Given an arbitrary smooth covector field A_a , and a smooth antisymmetric tensor field F_{ab} , show that

$$H_{ab} := \nabla_a A_b - \nabla_b A_a$$
 and $\nabla_a F_{bc} + \nabla_b F_{ca} + \nabla_c F_{ab}$

are both independent of the choice of the connection.

(d) Hence or otherwise show that

$$\nabla_a H_{bc} + \nabla_b H_{ca} + \nabla_c H_{ab} = 0 \; .$$

Recall that the curvature tensor is defined as

$$\nabla_a \nabla_b V^c - \nabla_b \nabla_a V^c = R^c{}_{dab} V^d \; .$$

(e) Show that

$$\nabla_a \nabla_b A_c - \nabla_b \nabla_a A_c = -R^d{}_{cab} A_d \; .$$

(f) Hence show that $R^{d}_{abc} + R^{d}_{bca} + R^{d}_{cab} = 0$ for a torsion-free connection. (g) Show further that, for a tensor T_{ab} ,

$$\nabla_a \nabla_b T_{cd} - \nabla_b \nabla_a T_{cd} = -R^e{}_{cab} T_{ed} - R^e{}_{dab} T_{ce} \; .$$

(h) Hence show that $R_{abcd} = -R_{abdc}$ if ∇ is metric and torsion-free.

ii. Show that the symmetry $R_{abcd} = R_{cdab}$ follows from $R_{abcd} = R_{[ab]cd} = R_{ab[cd]}$ and $R_{[abc]d} = 0$.

3 Counting components

(1) In four dimensions, a tensor satisfies $T_{abcde} = T_{[abcde]}$. Show that $T_{abcde} = 0$.

(2) A tensor T_{ab} is symmetric if $T_{ab} = T_{(ab)}$. In *n*-dimensional space, it has n^2 components, but only $\frac{1}{2}n(n + 1)$ of these can be specified independently—for example the components T_{ab} for $a \le b$. How many independent components do the following tensors have (in *n* dimensions)?

(a) F_{ab} with F_{ab} = F_[ab].
(b) A tensor of type (0, k) such that T_{ab...c} = T_[ab...c] (distinguish the cases k ≤ n and k > n, bearing in mind the result of question (1)).
(c) R_{abcd} with R_{abcd} = R_{[ab]cd} = R_{ab[cd]}.
(d) R_{abcd} with R_{abcd} = R_{[ab]cd} = R_{ab[cd]} = R_{cdab}.

Show that, in four dimensions, a tensor with the symmetries of the Riemann tensor has 20 independent components.