Questions for the General Relativity II exam

The candidate will draw randomly two questions from the list below, and will be asked to report on the topic drawn.

This list of questions gives also a faithful representation of the contents of the lectures.

- i. Lie bracket, Jacobi identity, Levi-Civita connection, Riemann curvature tensor and its properties, the geodesic deviation equation
- ii. Inertial coordinates, Geodesic deviation (Jacobi equation), tidal forces
- iii. Einstein equations and matter: examples of energy-momentum tensors, dust in general relativity, the continuity equation
- iv. The Schwarzschild metric: the Eddington-Finkelstein extension; Time functions; the black hole; r = 0;
- v. The Schwarzschild metric: Stationary observers, the Flamm paraboloid
- vi. The Schwarzschild metric: Geodesics, the interpretation of *E*, circular timelike geodesics, photons
- vii. The Schwarzschild metric: Circular null geodesics, gravitational redshift, weak field light bending
- viii. The Schwarzschild metric: Massive test particles, Perihelion/periastron precession
 - ix. The parallel transport equation, geodetic precession along circular geodesics in Schwarzschild
 - x. Fermi-Walker transport, Thomas precession, The Lens-Thirring effect
 - xi. The Kruskal-Szekeres extension of the Schwarzschild metric
- xii. The Schwarzschild metric: Conformal Carter-Penrose diagram
- xiii. Perfect fluids, relativistic equation of motion, Newtonian thermodynamics interpretation
- xiv. Integration on manifolds, divergence theorem, conservation laws,
- xv. Linearized Einstein equations, TT-gauge, linearized waves
- xvi. Slowly varying weak gravitational fields, quadrupole formula

xvii. Spherically symmetric static stars: $g = -e^{\nu}dt^2 + e^{\lambda}dr^2 + r^2d\Omega^2$,

$$G^{0}_{0} = e^{-\lambda} \left(\frac{1}{r^{2}} - \frac{\lambda'}{r} \right) - \frac{1}{r^{2}} = -8\pi\rho ,$$

$$G^{1}_{1} = e^{-\lambda} \left(\frac{1}{r^{2}} + \frac{\nu'}{r} \right) - \frac{1}{r^{2}} = 8\pi\rho ,$$

derivation of the TOV equation

xviii. Spherically symmetric static stars, $g = -e^{\nu}dt^2 + e^{\lambda}dr^2 + r^2d\Omega^2$,

$$m' = 4\pi\rho r^2, e^{-\lambda(r)} = 1 - \frac{2m(r)}{r},$$
$$p' = -\frac{(\rho + p)(4\pi p r^3 + m(r))}{r(r - 2m(r))}$$

Buchdahl inequality, Chandrasekhar mass

xix. The Lie derivative, an axiomatic approach, relation to isometries

xx. Transporting tensor fields, flows of vector fields

- xxi. The Lie derivative: definition through flows
- xxii. Isometries, Killing vectors, maximally symmetric space-times
- xxiii. FRW metrics: cosmological red-shift formula, the red shift-factor z and distance
- xxiv. FRW metrics:

$$-G^{0}_{0} = 3\frac{\dot{R}^{2} + k}{R^{2}} = \kappa\rho + \Lambda, \kappa = 8\pi G/c^{4},$$

$$G^{i}_{i} \text{ (no summation)} = -\frac{2\ddot{R}}{r} - \frac{\dot{R}^{2} + k}{R^{2}} = \kappa p - \Lambda,$$

radiation and matter solutions,

xxv. The Friedman equation

$$\dot{R}^2 = \frac{\kappa E}{3R^2} + \frac{\kappa E}{3R} + \frac{1}{3}\Lambda R^2 - k,$$

its solutions, behavior for *R* small and large,
instability of static solutions

- xxvi. Variational principles: Euler-Lagrange equations, scalar fields
- xxvii. The Hilbert variational principle
- xxviii. The Palatini variational principle