- (1) Show that the tensor field $g_{\mu\nu}(x) = \eta_{\mu\nu}$ is invariant under Poincaré transformations, i.e. $x^{\mu} \mapsto \bar{x}^{\mu} = L^{\mu}{}_{\nu}x^{\nu} + c^{\mu}$, where $L^{\mu}{}_{\nu}$ is a constant matrix subject to $L^{\mu}{}_{\rho}L^{\nu}{}_{\sigma}\eta_{\mu\nu} = \eta_{\rho\sigma}$ and c^{μ} are constants. Why does $L^{\mu}{}_{\nu}$ have 6 degrees of freedom in n = 4?
- (2) Show that the vector field v^A (A = 1, 2) given by $v^A \partial_A = -x^2 \partial_1 + x^1 \partial_2$ is invariant under rotations in \mathbb{R}^2 .
- (3) Show that the (1,1) tensor field $t^{\mu}{}_{\nu}(x) = \delta^{\mu}{}_{\nu}$ is invariant under general transformations.
- (4) Show that (any) contraction of a (p,q) tensor results in a (p-1,q-1) tensor.
- (5) Show that every covector field $\omega_{\mu}(x)$ is a finite combination of terms of the form $\phi \partial_{\mu} \psi$, where ϕ , ψ are scalar fields. Hint: Consider for the ψ 's the functions x^{μ} with $\mu = 1, 2..., n$.
- (6) Prove that, for a torsion free connection ∇_{μ} ,

$$(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu})(\phi\,\omega_{\rho}) = \phi\,(\nabla_{\mu}\nabla_{\nu} - \nabla_{\nu}\nabla_{\mu})\,\omega_{\rho} \tag{0.1}$$

(7) Show that

$$\nabla_{[\mu}\nabla_{\nu}(\phi\nabla_{\rho]}\psi) = 0 \tag{0.2}$$

(8) Show that the geodesic equation for a curve $x^{\mu} = z^{\mu}(\lambda)$ is the Euler-Lagrange equation for

$$S[z] = \int (\dot{z}, \dot{z}) \, d\lambda \tag{0.3}$$

(9) Suppose two metrics, $g_{\mu\nu}$ and $\bar{g}_{\mu\nu}$, are related by

$$\bar{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu} \tag{0.4}$$

Show that the corresponding Christoffel symbols are related by

$$\bar{\Gamma}^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho} + \frac{1}{2} \,\bar{g}^{\mu\sigma} \left(2\nabla_{(\nu}h_{\rho)\sigma} - \nabla_{\sigma}h_{\nu\rho} \right) \tag{0.5}$$

where ∇_{μ} is the covariant derivative associated with the metric $g_{\mu\nu}$ and $\bar{g}^{\mu\rho}\bar{g}_{\rho\nu} = \delta^{\mu}{}_{\nu}$.

(10) Let ∇_{μ} be any covariant derivative, not necessarily associated with some metric. Show that the expressions

$$(\mathcal{L}_{\xi}\eta)^{\mu} = \xi^{\nu} \nabla_{\nu} \eta^{\mu} - \eta^{\nu} \nabla_{\nu} \xi^{\mu} \tag{0.6}$$

$$(\mathcal{L}_{\xi}\omega)_{\mu} = \xi^{\nu} \nabla_{\nu} \omega_{\mu} + \omega_{\nu} \nabla_{\mu} \xi^{\nu} \tag{0.7}$$

$$(\mathcal{L}_{\xi}t)_{\mu\nu} = \xi^{\rho} \nabla_{\rho} t_{\mu\nu} + 2t_{\rho(\mu} \nabla_{\nu)} \xi^{\rho}, \qquad t_{\mu\nu} = t_{(\mu\nu)}$$
(0.8)

$$(d\omega)_{\mu\nu\lambda} = \nabla_{[\mu}\omega_{\nu\lambda]}, \qquad \omega_{\mu\nu} = \omega_{[\mu\nu]} \tag{0.9}$$

are independent of the chosen connection. Can you think of any other differential operators having this property?

- (11) Let $\delta R_{\mu\nu}[h]$ be the Ricci tensor of a weak gravitational field computed in the lecture course. Prove that $\delta R_{\mu\nu}[h]$ vanishes for any h of the form $h_{\mu\nu} = \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$.
- (12) Let $F^{\mu}(\epsilon, x)$ a 1-parameter family of transformations with $F^{\mu}(0, x) = x^{\mu}$, all of which are symmetries of the metric $g_{\mu\nu}$. Show that this implies

$$(\mathcal{L}_{\xi}g)_{\mu\nu} = \xi^{\rho} \,\partial_{\rho}g_{\mu\nu} + g_{\rho\nu} \,\partial_{\mu}\xi^{\rho} + g_{\mu\rho} \,\partial_{\nu}\xi^{\rho} = 0\,, \qquad (0.10)$$

where $\xi^{\mu}(x) = \frac{d}{d\epsilon} F^{\mu}(\epsilon, x)|_{\epsilon=0}$.

(13) Consider the line element given by

$$ds^2 = d\theta^2 + \sin^2 \theta \, d\phi^2, \qquad 0 < \theta < \pi, \, 0 \le \phi \le 2\pi$$
 (0.11)

This has $\xi = \frac{\partial}{\partial \phi}$ as Killing vector. (Is there a computation-free argument for this? Hint: see Ex.(12)). Find two 'more' Killing vectors of ds^2 . Hint: consider the vector fields $\eta = x^1 \partial_2 - x^2 \partial_1$, a.s.o. on \mathbb{R}^3 and introduce polar coordinates. (Remark: 'more' means the three resulting Killing vectors $\xi_{(i)}$ are independent in the sense that $\sum_i c_i \xi_{(i)}(\theta, \phi) = 0$, for all (θ, ϕ) with $c_i = \text{const}$, implies $c_i = 0$.)

(14) There are constants C_{ij}^k , for the three vector fields $\xi_{(i)}$ found in (Ex.13), so that

$$\mathcal{L}_{\xi_{(i)}}\xi_{(j)} = \sum_{k} C_{ij}^{k} \xi_{(k)} \,. \tag{0.12}$$

Compute these constants.

- (15) A geodesic vector field v^i is one which satisfies $v^j \nabla_j v^i = 0$. Show that $v = \frac{\partial}{\partial \theta}$ is geodesic for the metric in Ex.(13). Show furthermore, that the curves $x^i(\lambda) = (\theta(\lambda), \phi(\lambda)) = (\lambda, \phi_0)$ are geodesics for all values $\phi_0 \in [0, 2\pi]$.
- (16) Conclude from the last statement in Ex.(15) that the vector field $\xi = \frac{\partial}{\partial \phi}$ satisfies the Jacobi equation along the integral curves of v. Use this fact to compute the Riemann tensor of ds^2 . Result: $R_{\phi\theta\phi\theta} = \sin^2\theta \implies R = 2$.

- (17) A metric g_{ij} is called conformally flat, if there exists a function F > 0, so that $g_{ij} = F^2 \mathring{g}_{ij}$, where \mathring{g}_{ij} is a flat metric. Show that ds^2 of Ex.(13) is conformally flat. Hint: Use the transformation $x^1 = \frac{2\sin\theta}{1+\cos\theta}\cos\phi$, $x^2 = \frac{2\sin\theta}{1+\cos\theta}\sin\phi$. Interpret this transformation in terms of stereographic projection from the south pole $\theta = \pi$.
- (18) Consider a function F, such that $(\nabla F, \nabla F)$ is constant. Show that the integral curves of $F^{\mu} := g^{\mu\nu} \nabla_{\nu} F$ are then geodesics. Show also that this exercise generalizes Ex.(15).
- (19) Consider a vector field ξ of the form $\xi = \xi^{\mu}\partial_{\mu} = \partial_t$ in some coordinate system (t, x^i) . Show that this has all transformations of the form $(t' = t + F(x), x'^i = f^i(x))$ as symmetries.
- (20) Consider the 2-dimensional line element given by

$$ds^{2} = A(r) dt^{2} + 2B(r) dt dr + C(r) dr^{2}$$
(0.13)

Show that, by a suitable transformation, we can arrange for the metric to be diagonal. Hint: Use a transformation under which $\xi = \partial_t$ is invariant.

(21) Consider the radial (l = 0) timelike geodesic r(s) in Schwarzschild which starts at r(0) = R with $\dot{r}(0) = 0$. Verify that (r(z), s(z)) with

$$r = R\cos^2\frac{z}{2}$$
 $s = \frac{1}{2}\left(\frac{R^3}{2M}\right)^{\frac{1}{2}}(z+\sin z)$, (0.14)

where $z \in [0, \pi)$, gives a parameter representation of the solution. What happens at r = 2M? How long does it take the particle to reach r = 0?

(22) Let $x^{\mu}(\lambda)$ be a curve with tangent $v^{\mu} = \frac{dx^{\mu}}{d\lambda}$ satisfying

$$v^{\nu}\nabla_{\nu}v^{\mu} = a\,v^{\mu} \tag{0.15}$$

for some function $a(\lambda)$. Show that, under a change of parametrization $\lambda \mapsto \overline{\lambda} = F(\lambda)$, the form of Eq.(0.15) remains intact, but the function a changes in some way. Then infer that there is always a parametrization so that \overline{a} is zero, and this parametrization is unique up to affine transformations of the form $\overline{\lambda} = A\lambda + B$. Finally show that, for solutions of (0.15) with v^{μ} timelike, the transition from λ to proper time s also has the effect of rendering a equal to zero.

(23) Using what is largely a repetition of a calculation in the lecture, show that every Killing vector satisfies the identity

$$\nabla_{\mu}\nabla_{\nu}\xi_{\rho} = -R_{\nu\rho\mu}{}^{\sigma}\xi_{\sigma} \tag{0.16}$$

(24) Let $h_{\mu\nu}$ and $q_{\mu\nu}$ be respectively the (t, r) - part and (Θ, ϕ) - part of the Schwarzschild metric $g_{\mu\nu}$ (so that $g_{\mu\nu} = h_{\mu\nu} + q_{\mu\nu}$). Then, by a long

calculation, one finds for the Riemann tensor that

$$R_{\mu\nu\rho\sigma} = \frac{4M}{r^3} \left(q_{\rho[\mu}q_{\nu]\sigma} + h_{\rho[\mu}h_{\nu]\sigma} - \frac{1}{2}h_{\rho[\mu}q_{\nu]\sigma} + \frac{1}{2}h_{\sigma[\mu}q_{\nu]\rho} \right)$$
(0.17)

Check that $R_{\mu\nu\rho\sigma}$ has all the necessary symmetries of a Riemann tensor and that $g_{\mu\nu}$ is a vacuum solution. Check furthermore that r = 0 is a singularity of some scalar built from the curvature.

(25) Given the additional information that

$$\nabla_{\rho} q_{\mu\nu} = -\frac{2}{r} q_{\rho(\mu} \nabla_{\nu)} r \qquad (0.18)$$

show that this Riemann tensor also satisfies the (differential) Bianchi identities $\nabla_{[\lambda} R_{\mu\nu]\rho\sigma} = 0$. Hint: Use $h_{\rho[\mu} r_{\lambda} h_{\nu]\rho} = 0$, where $r_{\lambda} = \nabla_{\lambda} r$.

- (26) Show that the Schwarzschild coordinate r extends to a globally defined function on the Kruskal manifold and that it has saddle points on the 'bifurcation 2-sphere', where the future $(t = \infty)$ and past $(t = -\infty)$ horizons intersect.
- (27) A 'relativistic spacetime with c' consists of a family of Lorentz metrics $g^c_{\mu\nu}$ of signature (+, -, -, -) called 'time metrics', such that both $g^c_{\mu\nu}$ and the (inverse) 'space metrics' $h^{\mu\nu}_c$ given by $h^{\mu\nu}_c g^c_{\nu\rho} = -\frac{1}{c^2} \,\delta^{\mu}_{\rho}$ have limits as $c \to \infty$. These limit metrics $g^{\infty}_{\mu\nu}$ and $h^{\mu\nu}_{\infty}$ are of course degenerate. Construct such sequences for the Minkowski metric and compute the signature of $g^{\infty}_{\mu\nu}$ and $h^{\mu\nu}_{\infty}$. Then reconsider the nonrelativistic limit of $\nabla_{\nu} T^{\mu\nu} = 0$ in the lecture with

$$T_c^{\mu\nu} = \left(\rho + \frac{p}{c^2}\right) \, u_c^{\mu} u_c^{\nu} + p \, h_c^{\mu\nu} \tag{0.19}$$

and where u_c^{μ} is normalized by $g_{\mu\nu}^c u_c^{\mu} u_c^{\nu} = 1$.

(28) From the divergence-free-condition for the energy momentum tensor of a perfect fluid, i.e.

$$T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + p g^{\mu\nu}$$
(0.20)

conclude that

$$\nabla_{\mu}(\rho u^{\mu}) + p \nabla_{\mu} u^{\mu} = 0 \tag{0.21}$$

Hint: contract $\nabla_{\nu} T^{\mu\nu}$ with u_{μ} and that $u_{\mu} \nabla_{\nu} u^{\mu}$ is zero. Eq.(0.21) is the relativistic version of the continuity equation in the presence of pressure.

(29) When $\nabla_{\nu}T^{\mu\nu} = 0$ and ξ^{μ} is a Killing vector, show that there holds the conservation law

$$\nabla_{\nu} (T^{\nu}{}_{\mu} \xi^{\mu}) = 0 \tag{0.22}$$

Suppose we are in Minkowski space. Make sense of the following statement: 'The symmetry $T_{\mu\nu} = T_{\nu\mu}$ of the energy momentum tensor is relevant for angular momentum conservation, but not for linear momentum conservation.' Hint: For space and time translation Killing vectors there holds that $\nabla_{\mu}\xi^{\nu} = 0$, which is stronger than the Killing equation.

(30) In the case of a scalar field Φ obeying $\Box \Phi = g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \Phi = 0$, show that $T^{\mu\nu}$ defined by

$$T_{\mu\nu} = (\nabla_{\mu}\Phi)(\nabla_{\nu}\Phi) - \frac{1}{2}g_{\mu\nu}(\nabla\Phi)^{2}$$
 (0.23)

satisfies $\nabla_{\nu} T^{\mu\nu} = 0$. When $(M, g_{\mu\nu})$ is Minkowski space and ξ^{μ} the Killing vector ∂_t , show that the associated conservation law leads to the conservation of total energy demonstrated in the lecture.

- (31) Compute the area of a surface of constant isotropic radius ρ in a t = const-slice of the Schwarzschild metric and show it has a minimum at $\rho = \frac{m}{2}$.
- (32) A timelike Killing vector ξ^{μ} is called static, when $\xi_{[\mu}\nabla_{\nu}\xi_{\rho]} = 0$. Prove that it then satisfies $\nabla_{\mu}\xi_{\nu} = -\frac{1}{\xi^2}\xi_{[\mu}\nabla_{\nu}]\xi^2$, where $\xi^2 = g_{\mu\nu}\xi^{\mu}\xi^{\nu}$. Hint: Use the general fact that $a_{[\mu}b_{\nu\rho]} = 0$, with a_{μ} nowhere zero and $b_{\mu\nu} = b_{[\mu\nu]}$, implies that there exists c_{μ} , such that $b_{\mu\nu} = a_{[\mu}c_{\nu]}$. Alternatively you might start out by expanding $\xi_{[\mu}\nabla_{\nu}\xi_{\rho]} = 0$ and then contracting with ξ^{μ} .
- (33) When

$$\Box \gamma_{\mu\nu} - \frac{1}{2} \eta_{\mu\nu} \,\Box \gamma - 2\gamma^{\rho}{}_{(\mu,\nu)\rho} = 0 \tag{0.24}$$

where $\gamma_{\mu\nu} = \text{Re}(c_{\mu\nu} e^{i(k,x)})$ with $c_{\mu\nu} = \text{const}$, $k_{\mu} = \text{const}$ and (k,k) = 0, show that $\gamma^{\mu}{}_{\nu,\mu} = 0$ holds automatically.

(34) Let $T^{\mu\nu}(t,x)$ be a symmetric and divergence-free tensor on Minkowski space which is zero for large |x|. Prove the 'Laue-theorem'

$$\int_{\mathbb{R}^3} T_{ij}(t,x) \, d^3x = \frac{1}{2} \frac{d^2}{dt^2} \int_{\mathbb{R}^3} T_{00}(t,x) \, x_i x_j \, d^3x \tag{0.25}$$

- (35) Consider the vector field ξ on Minkowski space given by $\xi^{\mu}\partial_{\mu} = \partial_t + \Omega\partial_{\phi}$ with $\Omega = \text{const.}$ Discuss the causal nature of ξ in the different regions of Minkowski space.
- (36) Is ξ in the previous exercise hypersurface-orthogonal, i.e. is the quantity $\xi_{\mu} \nabla_{\nu} \xi_{\rho}$ is zero?
- (37) Show that a curve tangent to a Killing vector is a geodesic if the norm of the Killing vector has zero gradient along this curve.
- (38) Apply the previous result to find the timelike, spatially circular geodesics of the Schwarzschild spacetime by considering $\xi^{\mu}\partial_{\mu} = \partial_t + \Omega \partial_{\phi}$ (in Schwarzschild coordinates). Answer: $r^3 = \frac{M}{\Omega^2}, \theta = \frac{\pi}{2}$. Show also that

$$r > 3M$$
.

(39) Prove that

$$(\rho R^3)' + p(R^3)' = 0 \tag{0.26}$$

for the standard cosmological model.

- (40) Show (0.26) directly from the contracted Bianchi identities.
- (41) Show that the metric

$$g_{ij} dx^i dx^j = \frac{dr^2}{1 - r^2} + r^2 d\Omega^2$$
(0.27)

can be realized as the metric on \mathbb{S}^3 , i.e. the metric induced by the Euclidean metric $\delta_{\mu\nu}$ on \mathbb{R}^4 on the three surface given by $\delta_{\mu\nu}x^{\mu}x^{\nu} = 1$.

- (42) Compute the volume of (\mathbb{S}^3, g_{ij}) .
- (43) Show that the metric

$$g_{ij} dx^i dx^j = \frac{dr^2}{1+r^2} + r^2 d\Omega^2$$
(0.28)

can be realized as the metric on \mathbb{H}^3 , i.e. the metric induced by the Minkowski metric on \mathbb{R}^4 on the three surface given by $\eta_{\mu\nu}x^{\mu}x^{\nu} = -1$.

(44) Prove for the Schwarzschild metric that (notation as in Ex.(24))

$$\nabla_{\mu}\nabla_{\nu}r = \frac{1}{r} \left[\frac{M}{r} g_{\mu\nu} + \left(1 - \frac{3M}{r}\right) q_{\mu\nu}\right] \tag{0.29}$$

(45) Suppose two metrics $g_{\mu\nu}$ and $\bar{g}_{\mu\nu}$ are related by

$$\bar{g}_{\mu\nu} = \omega^2 g_{\mu\nu} \,, \quad \omega > 0 \tag{0.30}$$

Show that the corresponding Christoffel symbols are related by

$$\bar{\Gamma}^{\mu}_{\nu\rho} = \Gamma^{\mu}_{\nu\rho} + \omega^{-1} (2 \,\delta^{\mu}{}_{(\nu} \nabla_{\rho)} \omega - g^{\mu\sigma} g_{\nu\rho} \nabla_{\sigma} \omega) \tag{0.31}$$

Use this result to show that the concept of null geodesics is conformally invariant (whereas that of affine parameter is not).

(46) De Sitter spacetime is given by the metric $(S > 0, 0 < \chi < \pi)$

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + S^2 \cosh^2(S^{-1}t)(d\chi^2 + \sin^2\chi \,d\Omega^2) \tag{0.32}$$

on $\mathbb{R} \times \mathbb{S}^3$. Argue that this spacetime satisfies

$$R_{\mu\nu} = \Lambda g_{\mu\nu} \tag{0.33}$$

with $S^{-1} = \sqrt{\frac{\Lambda}{3}}$.

6

(47) Realize the (1+1) - version of (0.32), i.e.

$$g_{\mu\nu}dx^{\mu}dx^{\nu} = -dt^2 + S^2 \cosh^2(S^{-1}t) \, d\phi^2 \tag{0.34}$$

as a submanifold of 3-dimensional Minkowski space.

- (48) A vector field ξ is called a conformal Killing vector, when $\mathcal{L}_{\xi}g_{\mu\nu} = \Phi g_{\mu\nu}$ for some function Φ . Show that $\xi = R(t) \partial_t$ is a conformal Killing vector on Robertson Walker spacetimes.
- (49) A vector field $\xi^{\mu}(x)$ is tangent to a 2-surface Σ given by $x^{\mu} = f^{\mu}(y^{A})$ (A = 1, 2), when there exists $X^{A}(y)$ such that $\xi^{\mu}(f(y)) = f^{\mu}{}_{,A}(y)X^{A}(y)$. Let ξ and η be vector fields tangent to Σ . Show that their Lie bracket is also tangent to Σ .
- (50) Let ξ^{μ} be a timelike Killing vector satisfying $\omega_{\mu\nu\rho} := \xi_{[\mu} \nabla_{\nu} \xi_{\rho]} = 0$ and (t, x^i) coordinates such that $\xi^{\mu} \partial_{\mu} = \partial_t$. Show that there exists a change of coordinates $\bar{t} = t F(x^i)$, $\bar{x}^i = x^i$, so that $\bar{g}_{0i} = 0$.
- (51) Let $\sigma_{\mu\nu}$ be antisymmetric. Express the orthogonal projection of $\sigma_{\mu\nu}$ with respect to some timelike vector ξ^{μ} in terms of the contraction of $\xi_{[\mu}\sigma_{\nu\rho]}$ with ξ^{μ} .
- (52) Let ξ^{μ} be a timelike Killing field and S^{μ} a vector orthogonal to ξ^{μ} , which is Fermi transported along a trajectory of ξ^{μ} . Prove that

$$\mathcal{L}_{\xi}S_{\mu} = \frac{3}{\xi^2} \,\omega_{\mu\nu\rho} \,S^{\nu}\xi^{\rho} \,, \qquad (0.35)$$

where $\xi^2 = \xi^{\mu} \xi_{\mu}$.

(53) Compare the proper time τ along a period for a circular geodesic of radius R in Schwarzschild with the proper time s for a static observer at the same radius. Show that

$$\frac{s}{\tau} = \sqrt{\frac{1 - \frac{2M}{R}}{1 - \frac{3M}{R}}} \tag{0.36}$$