
Übungen zu RT2 SS 2010

(1) Show that the tensor field gµν(x) = ηµν is invariant under Poincaré
transformations, i.e. xµ 7→ x̄µ = Lµ

νx
ν + cµ, where Lµ

ν is a constant
matrix subject to Lµ

ρL
ν
σηµν = ηρσ and cµ are constants. Why does

Lµ
ν have 6 degrees of freedom in n = 4 ?

(2) Show that the vector field vA (A = 1, 2) given by vA∂A = −x2∂1+x1∂2
is invariant under rotations in R2.

(3) Show that the (1, 1) - tensor field tµν(x) = δµν is invariant under gen-
eral transformations.

(4) Show that (any) contraction of a (p, q) - tensor results in a (p−1, q−1)
- tensor.

(5) Show that every covector field ωµ(x) is a finite combination of terms of
the form ϕ∂µψ, where ϕ, ψ are scalar fields. Hint: Consider for the ψ’s
the functions xµ with µ = 1, 2..., n.

(6) Prove that, for a torsion free connection ∇µ,

(∇µ∇ν −∇ν∇µ)(ϕωρ) = ϕ (∇µ∇ν −∇ν∇µ)ωρ (0.1)

(7) Show that

∇[µ∇ν(ϕ∇ρ]ψ) = 0 (0.2)

(8) Show that the geodesic equation for a curve xµ = zµ(λ) is the Euler-
Lagrange equation for

S[z] =

∫
(ż, ż) dλ (0.3)

(9) Suppose two metrics, gµν and ḡµν , are related by

ḡµν = gµν + hµν (0.4)

Show that the corresponding Christoffel symbols are related by

Γ̄µ
νρ = Γµ

νρ +
1

2
ḡµσ (2∇(νhρ)σ −∇σhνρ) (0.5)

where ∇µ is the covariant derivative associated with the metric gµν and
ḡµρḡρν = δµν .
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(10) Let∇µ be any covariant derivative, not necessarily associated with some
metric. Show that the expressions

(Lξη)
µ = ξν∇νη

µ − ην∇νξ
µ (0.6)

(Lξω)µ = ξν∇νωµ + ων∇µξ
ν (0.7)

(Lξt)µν = ξρ∇ρtµν + 2tρ(µ∇ν)ξ
ρ, tµν = t(µν) (0.8)

(dω)µνλ = ∇[µωνλ] , ωµν = ω[µν] (0.9)

are independent of the chosen connection. Can you think of any other
differential operators having this property?

(11) Let δRµν [h] be the Ricci tensor of a weak gravitational field computed
in the lecture course. Prove that δRµν [h] vanishes for any h of the form
hµν = ∂µξν + ∂νξµ.

(12) Let Fµ(ϵ, x) a 1-parameter family of transformations with Fµ(0, x) =
xµ, all of which are symmetries of the metric gµν . Show that this implies

(Lξg)µν = ξρ ∂ρgµν + gρν ∂µξ
ρ + gµρ ∂νξ

ρ = 0 , (0.10)

where ξµ(x) = d
dϵF

µ(ϵ, x)|ϵ=0.

(13) Consider the line element given by

ds2 = dθ2 + sin2 θ dϕ2 , 0 < θ < π , 0 ≤ ϕ ≤ 2π (0.11)

This has ξ = ∂
∂ϕ as Killing vector. (Is there a computation-free argu-

ment for this? Hint: see Ex.(12)). Find two ’more’ Killing vectors of
ds2. Hint: consider the vector fields η = x1∂2 − x2∂1, a.s.o. on R3 and
introduce polar coordinates. (Remark: ’more’ means the three resulting
Killing vectors ξ(i) are independent in the sense that

∑
i ci ξ(i)(θ, ϕ) = 0,

for all (θ, ϕ) with ci = const, implies ci = 0.)

(14) There are constants C k
ij , for the three vector fields ξ(i) found in (Ex.13),

so that

Lξ(i)ξ(j) =
∑
k

C k
ij ξ(k) . (0.12)

Compute these constants.

(15) A geodesic vector field vi is one which satisfies vj∇j v
i = 0. Show that

v = ∂
∂θ is geodesic for the metric in Ex.(13). Show furthermore, that

the curves xi(λ) = (θ(λ), ϕ(λ)) = (λ, ϕ0) are geodesics for all values
ϕ0 ∈ [0, 2π].

(16) Conclude from the last statement in Ex.(15) that the vector field ξ = ∂
∂ϕ

satisfies the Jacobi equation along the integral curves of v. Use this fact
to compute the Riemann tensor of ds2. Result: Rϕθϕθ = sin2 θ =⇒
R = 2.
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(17) A metric gij is called conformally flat, if there exists a function F > 0, so
that gij = F 2g̊ij , where g̊ij is a flat metric. Show that ds2 of Ex.(13) is

conformally flat. Hint: Use the transformation x1 = 2 sin θ
1+cos θ cosϕ, x2 =

2 sin θ
1+cos θ sinϕ. Interpret this transformation in terms of stereographic
projection from the south pole θ = π.

(18) Consider a function F , such that (∇F,∇F ) is constant. Show that the
integral curves of Fµ := gµν∇νF are then geodesics. Show also that
this exercise generalizes Ex.(15).

(19) Consider a vector field ξ of the form ξ = ξµ∂µ = ∂t in some coordi-
nate system (t, xi). Show that this has all transformations of the form
(t′ = t+ F (x), x′i = f i(x)) as symmetries.

(20) Consider the 2-dimensional line element given by

ds2 = A(r) dt2 + 2B(r) dt dr + C(r) dr2 (0.13)

Show that, by a suitable transformation, we can arrange for the metric
to be diagonal. Hint: Use a transformation under which ξ = ∂t is in-
variant.

(21) Consider the radial (l = 0) timelike geodesic r(s) in Schwarzschild which
starts at r(0) = R with ṙ(0) = 0. Verify that (r(z), s(z)) with

r = R cos2
z

2
s =

1

2

(
R3

2M

) 1
2

(z + sin z) , (0.14)

where z ∈ [0, π), gives a parameter representation of the solution. What
happens at r = 2M? How long does it take the particle to reach r = 0?

(22) Let xµ(λ) be a curve with tangent vµ = dxµ

dλ satisfying

vν∇νv
µ = a vµ (0.15)

for some function a(λ). Show that, under a change of parametrization
λ 7→ λ̄ = F (λ), the form of Eq.(0.15) remains intact, but the function a
changes in some way. Then infer that there is always a parametrization
so that ā is zero, and this parametrization is unique up to affine trans-
formations of the form λ̄ = Aλ+B. Finally show that, for solutions of
(0.15) with vµ timelike, the transition from λ to proper time s also has
the effect of rendering a equal to zero.

(23) Using what is largely a repetition of a calculation in the lecture, show
that every Killing vector satisfies the identity

∇µ∇νξρ = −Rνρµ
σξσ (0.16)

(24) Let hµν and qµν be respectively the (t, r) - part and (Θ, ϕ) - part of the
Schwarzschild metric gµν (so that gµν = hµν + qµν). Then, by a long
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calculation, one finds for the Riemann tensor that

Rµνρσ =
4M

r3

(
qρ[µqν]σ + hρ[µhν]σ − 1

2
hρ[µqν]σ +

1

2
hσ[µqν]ρ

)
(0.17)

Check that Rµνρσ has all the necessary symmetries of a Riemann tensor
and that gµν is a vacuum solution. Check furthermore that r = 0 is a
singularity of some scalar built from the curvature.

(25) Given the additional information that

∇ρ qµν = −2

r
qρ(µ∇ν)r (0.18)

show that this Riemann tensor also satisfies the (differential) Bianchi
identities ∇[λRµν]ρσ = 0. Hint: Use hρ[µrλhν]ρ = 0, where rλ = ∇λr.

(26) Show that the Schwarzschild coordinate r extends to a globally defined
function on the Kruskal manifold and that it has saddle points on the
’bifurcation 2-sphere’, where the future (’t = ∞’) and past (’t = −∞’)
horizons intersect.

(27) A ’relativistic spacetime with c’ consists of a family of Lorentz metrics
gcµν of signature (+,−,−,−) called ’time metrics’, such that both gcµν
and the (inverse) ’space metrics’ hµνc given by hµνc gcνρ = − 1

c2
δµρ have

limits as c → ∞. These limit metrics g∞µν and hµν∞ are of course degen-
erate. Construct such sequences for the Minkowski metric and compute
the signature of g∞µν and hµν∞ . Then reconsider the nonrelativistic limit
of ∇νT

µν = 0 in the lecture with

Tµν
c =

(
ρ+

p

c2

)
uµc u

ν
c + p hµνc (0.19)

and where uµc is normalized by gcµνu
µ
c uνc = 1.

(28) From the divergence-free-condition for the energy momentum tensor of
a perfect fluid, i.e.

Tµν = (ρ+ p)uµuν + p gµν (0.20)

conclude that
∇µ(ρu

µ) + p∇µu
µ = 0 (0.21)

Hint: contract ∇νT
µν with uµ and that uµ∇νu

µ is zero. Eq.(0.21) is the
relativistic version of the continuity equation in the presence of pressure.

(29) When ∇νT
µν = 0 and ξµ is a Killing vector, show that there holds the

conservation law
∇ν(T

ν
µξ

µ) = 0 (0.22)

Suppose we are in Minkowski space. Make sense of the following state-
ment: ’The symmetry Tµν = Tνµ of the energy momentum tensor is
relevant for angular momentum conservation, but not for linear mo-
mentum conservation.’ Hint: For space and time translation Killing
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vectors there holds that ∇µξ
ν = 0, which is stronger than the Killing

equation.

(30) In the case of a scalar field Φ obeying �Φ = gµν∇µ∇νΦ = 0, show that
Tµν defined by

Tµν = (∇µΦ)(∇νΦ)−
1

2
gµν(∇Φ)2 (0.23)

satisfies ∇νT
µν = 0. When (M, gµν) is Minkowski space and ξµ the

Killing vector ∂t, show that the associated conservation law leads to the
conservation of total energy demonstrated in the lecture.

(31) Compute the area of a surface of constant isotropic radius ρ in a t =
const -slice of the Schwarzschild metric and show it has a minimum at
ρ = m

2 .
(32) A timelike Killing vector ξµ is called static, when ξ[µ∇νξρ] = 0. Prove

that it then satisfies ∇µξν = − 1
ξ2
ξ[µ∇ν ]ξ

2, where ξ2 = gµνξ
µξν . Hint:

Use the general fact that a[µbνρ] = 0, with aµ nowhere zero and bµν =
b[µν], implies that there exists cµ, such that bµν = a[µcν]. Alternatively
you might start out by expanding ξ[µ∇νξρ] = 0 and then contracting
with ξµ.

(33) When

�γµν −
1

2
ηµν �γ − 2γρ(µ,ν)ρ = 0 (0.24)

where γµν = Re(cµν e
i(k,x)) with cµν = const, kµ = const and (k, k) = 0,

show that γµν,µ = 0 holds automatically.

(34) Let Tµν(t, x) be a symmetric and divergence-free tensor on Minkowski
space which is zero for large |x|. Prove the ’Laue-theorem’∫

R3

Tij(t, x) d
3x =

1

2

d2

dt2

∫
R3

T00(t, x)xixj d
3x (0.25)

(35) Consider the vector field ξ on Minkowski space given by ξµ∂µ = ∂t+Ω∂ϕ
with Ω = const. Discuss the causal nature of ξ in the different regions
of Minkowski space.

(36) Is ξ in the previous exercise hypersurface-orthogonal, i.e. is the quantity
ξ[µ∇νξρ] is zero?

(37) Show that a curve tangent to a Killing vector is a geodesic if the norm
of the Killing vector has zero gradient along this curve.

(38) Apply the previous result to find the timelike, spatially circular geodesics
of the Schwarzschild spacetime by considering ξµ∂µ = ∂t + Ω ∂ϕ (in

Schwarzschild coordinates). Answer: r3 = M
Ω2 , θ = π

2 . Show also that
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r > 3M .

(39) Prove that

(ρR3)˙+ p(R3)˙= 0 (0.26)

for the standard cosmological model.

(40) Show (0.26) directly from the contracted Bianchi identities.

(41) Show that the metric

gij dx
idxj =

dr2

1− r2
+ r2dΩ2 (0.27)

can be realized as the metric on S3, i.e. the metric induced by the Eu-
clidean metric δµν on R4 on the three surface given by δµνx

µxν = 1.

(42) Compute the volume of (S3, gij).

(43) Show that the metric

gij dx
idxj =

dr2

1 + r2
+ r2dΩ2 (0.28)

can be realized as the metric on H3, i.e. the metric induced by the
Minkowski metric on R4 on the three surface given by ηµνx

µxν = −1.

(44) Prove for the Schwarzschild metric that (notation as in Ex.(24))

∇µ∇νr =
1

r

[
M

r
gµν +

(
1− 3M

r

)
qµν

]
(0.29)

(45) Suppose two metrics gµν and ḡµν are related by

ḡµν = ω2gµν , ω > 0 (0.30)

Show that the corresponding Christoffel symbols are related by

Γ̄µ
νρ = Γµ

νρ + ω−1(2 δµ(ν∇ρ)ω − gµσgνρ∇σω) (0.31)

Use this result to show that the concept of null geodesics is conformally
invariant (whereas that of affine parameter is not).

(46) De Sitter spacetime is given by the metric (S > 0, 0 < χ < π)

gµνdx
µdxν = −dt2 + S2 cosh2(S−1t)(dχ2 + sin2 χdΩ2) (0.32)

on R× S3. Argue that this spacetime satisfies

Rµν = Λgµν (0.33)

with S−1 =
√

Λ
3 .



7

(47) Realize the (1 + 1) - version of (0.32), i.e.

gµνdx
µdxν = −dt2 + S2 cosh2(S−1t) dϕ2 (0.34)

as a submanifold of 3-dimensional Minkowski space.

(48) A vector field ξ is called a conformal Killing vector, when Lξgµν = Φgµν
for some function Φ. Show that ξ = R(t) ∂t is a conformal Killing vector
on Robertson Walker spacetimes.

(49) A vector field ξµ(x) is tangent to a 2-surface Σ given by xµ = fµ(yA)
(A = 1, 2), when there existsXA(y) such that ξµ(f(y)) = fµ,A(y)X

A(y).
Let ξ and η be vector fields tangent to Σ. Show that their Lie bracket
is also tangent to Σ.

(50) Let ξµ be a timelike Killing vector satisfying ωµνρ := ξ[µ∇νξρ] = 0 and

(t, xi) coordinates such that ξµ∂µ = ∂t. Show that there exists a change
of coordinates t̄ = t− F (xi), x̄i = xi, so that ḡ0i = 0.

(51) Let σµν be antisymmetric. Express the orthogonal projection of σµν
with respect to some timelike vector ξµ in terms of the contraction of
ξ[µσνρ] with ξ

µ.

(52) Let ξµ be a timelike Killing field and Sµ a vector orthogonal to ξµ,
which is Fermi transported along a trajectory of ξµ. Prove that

LξSµ =
3

ξ2
ωµνρ S

νξρ , (0.35)

where ξ2 = ξµξµ.

(53) Compare the proper time τ along a period for a circular geodesic of
radius R in Schwarzschild with the proper time s for a static observer
at the same radius. Show that

s

τ
=

√
1− 2M

R

1− 3M
R

(0.36)


