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Chapter 1. Basics

1 Basics

vector space V of dimension dimV = n over the field R (or C)

basis
{

b1, b2, . . . , bn

}

every vector v ∈ V is represented as a unique linear combination of the basis
vectors

v = v1b1 + v2b2 + · · · + vnbn =

n
∑

i=1

vibi

different bases lead to different components

basis
{

b̂1, . . . , b̂n

}

and basis
{

b̌1, . . . , b̌n

}

v =

n
∑

i=1

v̂ib̂i =

n
∑

i=1

v̌ib̌i

the components (v̂i)i=1,...,n and (v̌i)i=1,....n are completely different but represent
one and the same vector (w.r.t. two different bases)

once a basis has been chosen (or if it is clear which basis is used), it is customary
to write the components of a vector v (w.r.t. that basis) as

v =











v1

v2

...
vn











one speaks of a ‘column vector’

an endomorphism is a linear map A of the vector space V onto itself, i.e.,

A : V → V
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such a linear map takes vectors v ∈ V and maps these to A(v) ∈ V . it is customary
to write Av instead of A(v), because of the linearity of A.

once a basis has been chosen (or if it is clear which basis is used), the linear map
is represented by a matrix, which is usually denoted by the same letter

the map A is linear, hence

Av = A
(

∑n

j=1
vjbj

)

=
∑n

j=1
vj Abj

now, Abj is a vector in V and can thus be domposed w.r.t. basis

Abj =
∑n

i=1
Aijbi

it follows that

Av =
∑n

j=1
vj Abj =

∑n

j=1
vj

∑n

i=1
Aijbi =

∑n

i=1

(

∑n

j=1
Aijvj

)

bi

therefore the i = 1, . . . , n components of the transformed vector are

∑n

j=1
Aijvj

collecting the components Aij into a matrix

A =
(

Aij

)

i,j=1,...,n
=











A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

An1 An2 · · · Ann











we obtain the transformed vector Av in its column vector representation through
matrix multiplication

Av =











A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

An1 An2 · · · Ann





















v1

v2

...
vn











it is a common source of confusion to denote the linear map A and the matrix
representation of A (w.r.t. a basis) by the same letter. always keep in mind that
while the linear map is an abstract (and fixed) entity, its matrix representation
is not at all fixed but depends on the basis we choose. different basis: same map
but different matrix.
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2 Eigenvalues and eigenvectors

a vector v 6= ~o is an eigenvector of a linear map A if it is merely stretched or
compressed by the map A, i.e., if there is a number λ such that

Av = λv

eigenvectors are the linear map’s pampered children. while the linear map might
have some nasty effect on a general vector (rotate, reflect,. . . ), the map is rather
kind to an eigenvector: the effect of the map on an eigenvector is to simply
multiply it by a number.

the number λ is called the eigenvalue that is associated with the eigenvector v.

EXAMPLE

Consider the vector space R2 (with the standard basis) and the linear
map represented by the matrix

(

1 0
1 2

)

.

The vector
(

0
1

)

,

is an eigenvector, since

(

1 0
1 2

)(

0
1

)

= 2

(

0
1

)

.

The associated eigenvalue is 2.
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EXAMPLE

The set of C∞ functions x 7→ f(x) forms a vector space, and

d

dx

is a linear map. The function

e−x

is an eigenvector (‘eigenfunction’) since

d

dx
e−x = −e−x .

The associated eigenvalue is (−1). (Since the vector space of C∞ func-
tions is not finite dimensional, we cannot operate with matrices.)

v is an eigenvector of A if and only if there exists λ such that

Av = λv ⇔ (A − λ1)v = ~o

reinterpreting this equation we see that the set of eigenvalues of A is the set of
numbers λ such that

(A − λ1)v = ~o

possesses a non-trivial solution v.

this implies a number of equivalent statements.

λ is eigenvalue of A ⇔ (A − λ1)v = ~o has non-trivial solutions v

⇔ ker(A − λ1) 6= {~o}
⇔ (A − λ1) is not invertible

⇔ det(A − λ1) = 0

consequently, to obtain the set of eigenvalues of A we must solve the equation

det(A − λ1) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 − λ A12 · · · A1n

A21 A22 − λ · · · A2n

...
...

...
...

An1 An2 · · · Ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0
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the expression det(A − λ1) is called the characteristic polynomial of A. it is a
polynomial of degree n,

det(A − λ1) = (−1)n
(

λn + cn−1λ
n−1 + · · · + c1λ + c0

)

the coefficients (ci)i=0,...,n−1 are determined by the components (Aij)i,j=1,...,n of
A. the eigenvalues of A are the zeros of the characteristic polynomial, i.e., the
solutions of the equation

det(A − λ1) = (−1)n
(

λn + cn−1λ
n−1 + · · · + c1λ + c0

)

= 0

how many eigenvalues does a linear map A possess? it is crucial to distinguish
real vector spaces and complex vector spaces.

consider a vector space over the field R . then the linear map A is represented
by a real matrix (i.e., a matrix whose entries are real) and the coefficients of the
characteristic polynomial are real. the eigenvalues of A are the (real!) zeros of the
characteristic polynomial. the characteristic polynomial is a polynomial of degree
n.

therefore, if n is even, the number of eigenvalues of the map A can be anything
between 0 and n; if n is odd, the number of eigenvalues of the map A can be
anything between 1 and n.
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EXAMPLE

Consider the vector space R2 and the linear maps represented by the
matrices

A0 =

(

0 −1
1 0

)

, A1 =

(

1 1
0 1

)

, A2 =

(

0 1
1 0

)

.

The characteristic polynomials are

det(A0 − λ1) =

∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

= λ2 + 1 = 0 ,

det(A1 − λ1) =

∣

∣

∣

∣

1 − λ 1
0 1 − λ

∣

∣

∣

∣

= (1 − λ)2 = λ2 − 2λ + 1 = 0 ,

det(A2 − λ1) =

∣

∣

∣

∣

−λ 1
1 −λ

∣

∣

∣

∣

= λ2 − 1 = 0 .

Therefore,

A0 has no eigenvalue 6 ∃λ ,

A1 has one eigenvalue λ = 1 ,

A2 has two eigenvalues λ1 = 1, λ2 = −1 .

We see that real (2 × 2) matrices can have 0, 1, or 2 eigenvalues.

consider a vector space over the field C . then the linear map A is represented by
a complex matrix (i.e., a matrix whose entries are complex) and the coefficients
of the characteristic polynomial are complex. note that this does not necessarily
mean that a complex matrix features an i somewhere (but it could). e.g., both





1 4 + i −i

0 0 1
1 − i 0 −1



 and





1 0 −1
0 2 −2
1 0 −5





are complex matrices. (since R ⊂ C the real numbers are automatically complex
numbers.)

the eigenvalues of A are the (complex) zeros of the characteristic polynomial.
since this is a polynomial of degree n, the number of eigenvalues of the map A

can be anything between 1 and n. (the fundamental theorem of algebra states
that every polynomial has at least one (complex) zero.)
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EXAMPLE

Consider the vector space C2 and the linear maps represented by the
matrices

B1 =

(

1 + i 3 − i

0 1 + i

)

, B2 =

(

i −2
1 0

)

,

The characteristic polynomials are

det(B1 − λ1) =

∣

∣

∣

∣

1 + i − λ 3 − i

0 1 + i − λ

∣

∣

∣

∣

= (1 + i − λ)2

= λ2 − 2(1 + i)λ + (1 + i)2 = 0 ,

det(B2 − λ1) =

∣

∣

∣

∣

i − λ −2
1 −λ

∣

∣

∣

∣

= −(i − λ)λ + 2 = λ2 − iλ + 2 = 0 .

Therefore,

B1 has one eigenvalue λ = 1 + i ,

B2 has two eigenvalues λ1 = 2i, λ2 = −i .

We see that complex (2 × 2) matrices can have 1 or 2 eigenvalues.
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EXAMPLE

Consider the vector space C2 and the linear maps represented by the
matrices

A0 =

(

0 −1
1 0

)

, A1 =

(

1 1
0 1

)

, A2 =

(

0 1
1 0

)

.

The characteristic polynomials are

det(A0 − λ1) =

∣

∣

∣

∣

−λ −1
1 −λ

∣

∣

∣

∣

= λ2 + 1 = 0 ,

det(A1 − λ1) =

∣

∣

∣

∣

1 − λ 1
0 1 − λ

∣

∣

∣

∣

= (1 − λ)2 = λ2 − 2λ + 1 = 0 ,

det(A2 − λ1) =

∣

∣

∣

∣

−λ 1
1 −λ

∣

∣

∣

∣

= λ2 − 1 = 0 .

Therefore,

A0 has two eigenvalues λ1 = i, λ2 = −i ,

A1 has one eigenvalue λ = 1 ,

A2 has two eigenvalues λ1 = 1, λ2 = −1 .

We see that complex (2 × 2) matrices can have 1 or 2 eigenvalues.

like every polynomial the characteristic polynomial can be factorized by using its
roots. suppose that there are r roots (eigenvalues) {λ1, λ2, . . . , λr}. (we know
that 1 ≤ r ≤ n). then

det(A − λ1) = (−1)n
(

λn + cn−1λ
n−1 + · · · + c1λ + c0

)

= (−1)n
(

λ − λ1

)m1
(

λ − λ2

)m2 · · ·
(

λ − λr

)mr

where
m1 + m2 + · · ·mr = n .

the integer numbers m1, . . . ,mr are the multiplicities of the roots λ1, . . . , λr; in
our present context we say that m1,m2, . . . ,mr are the algebraic multiplicities

of the eigenvalues λ1, λ2, . . . , λr. (note that
∑n

i=1 mi = n is a specialty of the
complex numbers; in the case of a real vector space, the sum of the algebraic
multiplicities can be less than n.)
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Chapter 2. Eigenvalues and eigenvectors

consider a linear map A of the vector space V onto itself. the field can be R

or C . suppose that λ is an eigenvalue of A. the associated eigenvectors are
obtained by solving the equation

Av = λv ⇔ (A − λ1)v = ~o .

this is a system of linear equations. the existence of non-trivial solutions v is
guaranteed by the fact that det(A − λ1) = 0 (since λ is an eigenvalue).

applying the theory of systems of linear equations we see that the solutions of
(A − λ1)v = ~o form a (non-trivial) linear subspace Eλ in V ,

Eλ = ker(A − λ1) .

each vector v ∈ Eλ satisfies the equation (A − λ1)v = ~o and is thus an eigenvec-
tor of A with eigenvalue λ. we call the space Eλ the eigenspace of the map A

associated with the eigenvalue λ.
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EXAMPLE

Consider the vector space C3 and the linear map represented by the
matrix

A =





2 0 0
0 −1

2
5
2

0 5
2

−1
2



 .

Computing the eigenvalues we obtain

∣

∣A − λ1
∣

∣ =

∣

∣

∣

∣

∣

∣

2 − λ 0 0
0 −1

2
− λ 5

2

0 5
2

−1
2
− λ

∣

∣

∣

∣

∣

∣

= (2 − λ)

∣

∣

∣

∣

−1
2
− λ 5

2
5
2

−1
2
− λ

∣

∣

∣

∣

= (2 − λ)
(

(

λ + 1
2

)2 − 25
4

)

= (2 − λ)
(

λ2 + λ − 6
)

= 0 .

Accordingly, one eigenvalue is 2; the remaining eigenvalue(s) are ob-
tained by solving the quadratic equation λ2 + λ − 6 = 0,

−1 ±
√

1 + 24

2
= {−3, 2} .

The eigenvalue 2 appears again and the number (−3) is one more
eigenvalue. Accordingly, in the present example the eigenvalues of A

are λ1 = 2 and λ2 = −3. The algebraic multiplicities of the eigenvalues
are m1 = 2 and m2 = 1, because the characteristic polynomial reads

−(λ − 2)
(

λ2 + λ − 6
)

= −(λ − 2)(λ − 2)(λ + 3) = −(λ − 2)2(λ + 3) .

Let us compute the eigenspace E1 (the set of eigenvectors) associated
with λ1 = 2.

(A − λ1
︸︷︷︸

2

1 ) v = ~o ⇔





0 0 0
0 −5

2
5
2

0 5
2

−5
2









v1

v2

v3



 =





0
0
0



 .

The only equation we get is −5
2
v2 + 5

2
v3 = 0; hence the solution is

E1 =
{

v =





v1

v2

v3





∣

∣

∣
v2 = v3

}

.

To be continued. . .
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EXAMPLE

. . . and now the continuation. The eigenspace E1 is a two-dimensional
subspace of V ; it is the space of eigenvectors of A w.r.t. the eigenvalue
λ1 = 2. Every vector in E1 is an eigenvector of A w.r.t. λ1; examples
are





1
0
0



 ,





0
1
1



 ,





1
1
1



 ,





−1
2
2



 .

Since E1 is two-dimensional, it is spanned by any two (linearly inde-
pendent) vectors in E1; for instance we can write

E1 =
〈





1
0
0



 ,





0
1
1





〉

,

where 〈·〉 denotes the linear span. (Recall that the linear span
〈v1, . . . , vn〉 is defined as {c1v1 + · · ·+ cnvn} with constants c1, . . . , cn.)

Analogously, we compute the eigenspace E2 associated with λ2 = −3.

(A − λ2
︸︷︷︸

−3

1 ) v = ~o ⇔





5 0 0
0 5

2
5
2

0 5
2

5
2









v1

v2

v3



 =





0
0
0



 .

We obtain two independent equations: 5v1 = 0 and 5
2

v2 + 5
2
v3 = 0;

hence the solution is

E2 =
{

v =





v1

v2

v3





∣

∣

∣
v1 = 0 ∧ v2 = −v3

}

.

This eigenspace is spanned by one vector and thus one-dimensional;
we write

E2 =
〈





0
1
−1





〉

.

Every vector in E2 is an eigenvector associated with the eigenvalue
λ2 = −3. To be continued. . .
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EXAMPLE

. . . and now the conclusion. Let us summarize. The linear map repre-
sented by the matrix

A =





2 0 0
0 −1

2
5
2

0 5
2

−1
2



 .

possesses two eigenvectors: λ1 = 2 and λ2 = −3. The associated
spaces of eigenvectors (eigenspaces) E1 and E2 are

E1 =
〈





1
0
0



 ,





0
1
1





〉

, E2 =
〈





0
1
−1





〉

.

The algebraic multiplicity of λ1 = 2 is m1 = 2; the algebraic multi-
plicity of λ2 = −3 is m2 = 1.

Let us define the geometric multiplicity dλ of an eigenvalue λ as the
dimension of the associated eigenspace Eλ. In our example we get
d1 = dim E1 = 2 and d2 = dim E2 = 1. Comparing the algebraic
multiplicities with the geometric multiplicities we see that

d1 = m1 = 2 , d2 = m2 = 1 .

An obvious question to ask is whether this statement generalizes: Does
the geometric multiplicity always coincide with the algebraic multi-
plicity? Unfortunately, as we will see in the subsequent example, the
answer is no.
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EXAMPLE

Consider the vector space C3 and the linear map represented by the
matrix

A =





0 −1 0
1 2 0
0 0 −1



 .

To compute the eigenvalues we calculate the characteristic polynomial;
we obtain

∣

∣A − λ1
∣

∣ =

∣

∣

∣

∣

∣

∣

−λ −1 0
1 2 − λ 0
0 0 −1 − λ

∣

∣

∣

∣

∣

∣

= (−1 − λ)

∣

∣

∣

∣

−λ −1
1 2 − λ

∣

∣

∣

∣

= (−1 − λ)
(

−λ(2 − λ) + 1
)

= −(λ + 1)
(

λ2 − 2λ + 1
)

= −(λ + 1)(λ − 1)2 = 0 .

Accordingly, there exist two eigenvalues, λ1 = −1 and λ2 = 1; the
algebraic multiplicities are m1 = 1 and m2 = 2.

Computing the eigenvectors (eigenspace) associated with λ1 = −1 we
obtain

(

A − λ11
)

v =
(

A + 1
)

v =





1 −1 0
1 3 0
0 0 0









v1

v2

v3



 =





0
0
0



 ,

hence v1 + v2 = 0, v1 + 3v2 and therefore v1 = 0 and v2 = 0. Accord-
ingly,

E1 =
〈





0
0
1





〉

.

Analogously, we compute the eigenvectors (eigenspace) associated with
λ2 = 1. We obtain

(

A − λ11
)

v =
(

A − 1
)

v =





−1 −1 0
1 1 0
0 0 −2









v1

v2

v3



 =





0
0
0



 ,

hence v1 + v2 = 0 and v3 = 0. To be continued. . .
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EXAMPLE

. . . and now the conclusion. Accordingly,

E2 =
〈





1
−1
0





〉

.

We see that the geometric multiplicities are

d1 = dim E1 = 1 , d2 = dim E2 = 1 .

In particular, we conclude that the geometric multiplicity of the eigen-
value λ2 = 1 is less than its algebraic multiplicity.

d1 = m1 = 1 , d2 = 1 < m2 = 2 .

This statement is true in general. The geometric multiplicity of an
eigenvalue is less than or equal to its algebraic multiplicity.

consider a linear map A of V onto itself. let λ be an eigenvalue of A with al-
gebraic multiplicity mλ; let Eλ = ker(A − λ1) denote the space of eigenvectors
(eigenspace) associated with λ. we define the geometric multiplicity dλ of λ as
the dimension of the associated eigenspace Eλ,

dλ = dim Eλ .

then there is the following important statement:

1 ≤ dλ ≤ mλ ;

in particular, the geometric multiplicity of an eigenvalue λ is less than or equal
to its algebraic multiplicity.

suppose the linear map A possesses the eigenvalues λ1, λ2, . . . , λr with geometric
multiplicities d1, d2, . . . , dr, i.e., the associated eigenspaces E1, E2, . . . , Er satisfy
dim Ei = di ∀i = 1, . . . , r. so, how many linearly independent eigenvectors does
the map A have? the answer is

d1 + d2 + · · · + dr .

since di ≤ mi and m1 + · · · + mr = n (or ≤ n in the case of real vector spaces)
we obtain

d1 + d2 + · · · + dr ≤ n .
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this is a non-trivial statement, which follows essentially from the fact that eigen-
vectors associated with different eigenvalues are always linearly independent. (we
omit the proof.)

an alternative way of stating the above is

E1 + · · · + Er = E1 ⊕ · · · ⊕ Er (⊆ V ) ,

or

dim
(

E1 ⊕ · · · ⊕ Er

)

= dim E1 + · · · + dimEr = d1 + · · · + dr (≤ n) .

every eigenspace Ei adds di linearly independent eigenvectors to the set of eigen-
vectors. (we never have to worry that we get a linearly dependent one.)

we conclude this section with some useful remarks and observations.

triangular matrices

consider an (upper or lower) triangular matrix, i.e.,

A =















A11 A12 A13 · · · A1n

0 A22 A23 · · · A2n

0 0 A33 · · · A3n

...
...

...
...

...
0 0 0 · · · Ann















.
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to compute the eigenvalues of this matrix we search for the zeros of the charac-
teristic polynomial, i.e.,

|A − λ1| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

A11 − λ A12 A13 · · · A1n

A22 − λ A23 · · · A2n

A33 − λ · · · A3n

. . .
...

Ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (A11 − λ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

A22 − λ A23 · · · A2n

A33 − λ · · · A3n

. . .
...

Ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (A11 − λ)(A22 − λ)

∣

∣

∣

∣

∣

∣

∣

A33 − λ · · · A3n

. . .
...

Ann − λ

∣

∣

∣

∣

∣

∣

∣

= (A11 − λ)(A22 − λ)(A33 − λ) · · · (Ann − λ) .

it follows that the eigenvalues coincide with the diagonal elements of the triangular
matrix, i.e., the set of eigenvalues is

{A11, A22, A33, . . . , Ann} .

eigenvalues, determinant, and trace

recall that the trace of a matrix is the sum of its diagonal elements, i.e.,

tr A = A11 + A22 + · · · + Ann =

n
∑

i=1

Aii .

consider for consistency a (n-dimensional) vector space V over the field C . let
A be a linear map of V onto itself. then there exist r ≤ n eigenvalues of A,

{λ1, λ2, . . . , λr} ,

with algebraic multiplicities m1, m2, . . . , mr, such that m1 + m2 + · · ·+ mr = n.

the eigenvalues {λ1, . . . , λr} of a linear map A are intimately connected with its
determinant and its trace: the determinant is the product of the eigenvalues, the
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trace is the sum of the eigenvalues. however, we must take care of the algebraic
multiplicities; an eigenvalue λi with algebraic multiplicity mi appears mi times
in the product or sum. therefore,

detA = λ1 · · · λ1
︸    ︷︷    ︸

m1 times

λ2 · · ·λ2
︸    ︷︷    ︸

m2 times

· · ·λr · · ·λr
︸    ︷︷    ︸

mr times

= λm1

1 λm2

2 · · ·λmr

r =

r
∏

i=1

λ
mi

i ,

tr A = λ1 + · · · + λ1
︸           ︷︷           ︸

m1 times

+ λ2 + · · · + λ2
︸           ︷︷           ︸

m2 times

+ · · · + λr + · · · + λr
︸           ︷︷           ︸

mr times

= m1λ1 + m2λ2 + · · · + mrλr =
r

∑

i=1

miλi .

the proof is not difficult if one uses the characteristic polynomial and its decom-
position into its roots, i.e.,

|A − λ1| = (−1)n
(

λ − λ1

)m1
(

λ − λ2

)m2 · · ·
(

λ − λr

)mr

.

we restrict ourselves to the simple example of a (2 × 2) matrix, i.e.,

A =

(

A11 A12

A21 A22

)

.

let λ1 and λ2 denote the eigenvalues of A. (either λ1 6= λ2 or λ1 = λ2; in the
latter case there exists only one eigenvalue whose multiplicity is 2). we obtain

|A − λ1| =

∣

∣

∣

∣

A11 − λ A12

A21 A22 − λ

∣

∣

∣

∣

= (A11 − λ)(A22 − λ) − A12A21

= λ2 −
(

A11 + A22

)

λ + A11A22 − A12A21

= λ2 − (tr A)λ + detA

(λ − λ1)(λ − λ2) = λ2 − (λ1 + λ2)λ + λ1λ2 .

comparing the coefficients of the polynomials we are led to the result

detA = λ1λ2 , tr A = λ1 + λ2 .
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EXAMPLE

Consider the linear map on C2 represented by (2 × 2) matrix

A =

(

1 3
−1 3

)

.

We use detA and tr A to compute the eigenvalues of A.

det A = 6 , tr A = 4 .

Accordingly,

λ1λ2 = detA = 6 , λ1 + λ2 = tr A = 4 ,

which leads to a quadratic equation that can be solved to yield

λ1 = 2 +
√

2 , λ2 = 2 −
√

2 .

a simple corollary of the relation

det A =

r
∏

i=1

λ
mi

i

is the statement that a linear map is singular (i.e., not invertible) if and only if
zero is an eigenvalue of A.
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3 Diagonalization

before we begin let us reiterate: a vector v of a vector space V can be represented
by a column vector once a basis of V has been chosen. the column vector rep-
resentation depends on the choice of basis. likewise, a linear map A of a vector
space V onto itself can be represented as a matrix once a basis of V has been

chosen. the matrix representation of A depends on the choice of basis.
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EXAMPLE

Consider the vector space R2 and the linear map A which describes a
reflection at 45◦ (i.e., a reflection at the straight line with slope 45◦).
Under this reflection, the standard basis vectors

e1 =

(

1
0

)

e2 =

(

0
1

)

are mapped to

Ae1 = A

(

1
0

)

=

(

0
1

)

= e2 Ae2 = A

(

0
1

)

=

(

1
0

)

= e1 .

The matrix representation of A is obtained by using Ae1 and Ae2 as
columns; hence

A =

(

0 1
1 0

)

.

Now let us choose a different basis {b1, b2} and represent the linear
map A w.r.t. {b1, b2}. Choose

b1 =

(

1
1

)

e2 =

(

1
−1

)

.

We obtain (from purely geometric considerations, i.e., by applying the
reflection)

Ab1 = b1 Ab2 = −b2 .

Note that b1 and b2 are eigenvectors of A (associated with λ1 = 1
and λ2 = −1, respectively). Since we have chosen a (non-standard)
basis, column vectors do not quite represent what we are used to. For
instance, the vector

v =

(

2
0

)

now means v = 2 · b1 + 0 · b2, i.e., this vector v points along the 45◦

line. (It corresponds to

(

2
2

)

w.r.t. the old standard basis.)

To be continued. . .
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EXAMPLE

. . . and now the conclusion. Likewise, the vector

v =

(

−1
1

)

now means v = (−1)·b1+1·b2, i.e., this vector v points in the direction

of the negative x-axis. (It corresponds to

(

−2
0

)

w.r.t. the old standard

basis.)

W.r.t. the new basis, the transformation Ab1 = b1, Ab2 = −b2, looks
like

Ab1 = A

(

1
0

)

=

(

1
0

)

= b1 Ab2 = A

(

0
1

)

= −
(

0
1

)

= −b2 .

The matrix representation of A is obtained by using Ae1 and Ae2 as
columns; hence

A =

(

1 0
0 −1

)

.

We obtain a different matrix representation for the same linear map.
This matrix representation is preferred to the original one since the
matrix is diagonal.

we call a linear map A diagonalizable, if A possesses n linearly independent
eigenvectors, i.e., a basis of eigenvectors.

when does this happen? suppose that

{λ1, λ2, . . . , λr}

are the eigenvalues of the linear map A. the associated eigenspaces (spaces of
eigenvectors) are E1, E2, . . . , Er. the geometric multiplicity of the eigenvalue λi

is di = dimEi. we know that there exist

d1 + d2 + · · · + dr (≤ n)

linearly independent eigenvectors. therefore, if and only if

d1 + d2 + · · · + dr = n ,
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then there exist n linearly independent eigenvectors. alternatively we can write

E1 ⊕ · · · ⊕ Er = V .

an important case of diagonalizability is the case of a linear map A that possesses
n different eigenvalues λ1, λ2, . . . , λn (i.e., r = n). then, automatically, there exist
n linearly independent eigenvectors. (this is simply because di = dimEi ≥ 1 ∀i;
hence, if there exist n different eigenvalues, then di = dim Ei = 1 ∀i, and by
the general considerations on linear independence, these eigenspaces/-vectors are
linearly independent.)

let us suppose that the map A is diagonalizable and let us choose a basis of (i.e.,
n linearly independent) eigenvectors. we do this by successively choosing bases
{vi;1, . . . , vi;di

} in the eigenspaces Ei, i.e.,

V =

E1

︷                ︸︸                ︷
〈

v1;1, . . . , v1;d1
︸           ︷︷           ︸

d1 vectors

〉

⊕
E2

︷                ︸︸                ︷
〈

v2;1, . . . , v2;d2
︸           ︷︷           ︸

d2 vectors

〉

⊕ · · · ⊕
Er

︷                ︸︸                ︷
〈

vr;1, . . . , vr;dr
︸           ︷︷           ︸

dr vectors

〉

.

since vi;j is in Ei, it is an eigenvector associated with the eigenvalue λi, i.e.,

Avi;j = λivi;j .

let us consider the matrix representation of the diagonalizable map A w.r.t. this
basis of eigenvectors. let us denote the matrix we obtain by D (instead of A). we
straightforwardly obtain

D = diag
(

λ1, . . . , λ1
︸      ︷︷      ︸

d1 times

, λ2, . . . , λ2
︸      ︷︷      ︸

d2 times

, . . . , λr, . . . , λr
︸      ︷︷      ︸

dr times

)

=









































λ1

. . .

λ1

λ2

. . .

λ2

. . .

λr

. . .

λr









































.
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it therefore follows that a diagonalizable linear map can be represented by a
diagonal matrix, whose entries are the eigenvalues. we call the diagonal matrix

D = diag
(

λ1, . . . , λ1
︸      ︷︷      ︸

d1 times

, λ2, . . . , λ2
︸      ︷︷      ︸

d2 times

, . . . , λr, . . . , λr
︸      ︷︷      ︸

dr times

)

the eigenvalue matrix of the linear map A.

conversely, if a map A can be represented by a diagonal matrix, then the eigen-
values are the entries of this matrix (so that the matrix is automatically the
eigenvalue matrix) and the eigenvectors of A are represented by the column vec-
tors











1
0
...
0











,











0
1
...
0











, . . . ,











0
0
...
1











.

hence, there exists a basis of eigenvectors and thus A is diagonalizable.

summing up, we see that a linear map A is diagonalizable if and only if it can
be represented by a diagonal matrix.
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EXAMPLE

Consider the vector space R3 and the linear map A represented by the
‘Sudoku matrix’

A =





1 2 3
4 5 6
7 8 9



 .

(The basis is tacitly assumed to be the standard basis.) The charac-
teristic polynomial is

|A − λ1| = −λ3 + 15λ2 + 18λ .

The eigenvalues are the zeros of the characteristic polynomial, i.e.,

λ1 = 0 , λ2 = 3
2

(

5 +
√

33
)

, λ3 = 3
2

(

5 −
√

33
)

.

Since the map A has three different eigenvalues, it must have three lin-
early independent eigenvectors and thus a basis of eigenvectors. There-
fore, the Sudoku map is diagonalizable and it can be represented by
the diagonal eigenvalue matrix

D = diag
(

0, 3
2

(5 +
√

33), 3
2
(5 −

√
33)

)

.
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EXAMPLE

Consider the vector space C2 and the linear map A represented by
matrix

A =

(

1 1
0 1

)

.

(The basis is tacitly assumed to be the standard basis.) The eigenval-
ues can be read off directly, since this is a triangular matrix: There
is only one eigenvalue, λ = 1. (Its algebraic multiplicity must be
mλ = 2.) Let us compute the space of eigenvectors Eλ. From

(A − λ1) v =

(

0 1
0 0

)(

v1

v2

)

=

(

0
0

)

we deduce that

Eλ =
〈

(

1
0

)

〉

, dλ = dim Eλ = 1 .

In particular, there is only one eigenvector (and not two linearly inde-
pendent ones). There does not exist a basis of eigenvectors; therefore,
the map A is not diagonalizable.

EXAMPLE

In connection with the previous example we consider a rather trivial
example: The identity map 1 has one eigenvalue, λ = 1 (with algebraic
multiplicity mλ = 2). Every vector is an eigenvector for 1, hence
Eλ = C2 and gλ = dimEλ = 2. The identity map is diagonalizable
(and the standard matrix representation of 1 is already diagonal).

We see that it is not a problem if an eigenvalue appears multiple times
(i.e., if its algebraic multiplicity is greater than 1). A problem occurs if
the geometric multiplicity is strictly less than the algebraic multiplicity,
dλ < mλ. In that case,

∑r
i=1 mi = n but

∑r
i=1 di < n, whence

diagonalizability is ruled out.
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EXAMPLE

Consider the vector space R2 and the linear map represented by the
matrix

A =

(

0 −1
1 0

)

.

The characteristic polynomial is λ2 + 1 = 0, hence there do not exist
any eigenvalues.

If we consider the same map as a map on the vector space C2, then
there exist two eigenvalues: λ1 = i, λ2 = −i. The map is not diago-
nalizable as a real map, but it is in fact diagonalizable regarded as a
complex map. (Since there exist two different eigenvalues, there exist
two linearly independent eigenvectors.)

in practice, a linear map is given in its matrix representation w.r.t. some (stan-
dard) basis,

A =











A11 A12 · · · A1n

A21 A22 · · · A2n

...
...

...
...

An1 An2 · · · Ann











.

we know that, if and only if A is diagonalizable, then we can switch to a matrix
representation in terms of a diagonal matrix (the eigenvalue matrix D). how do
we switch in practice? we need a ‘switch matrix’ S.

the switch matrix is supposed to transform the standard basis to a basis of eigen-
vectors. on the basis of eigenvectors, the linear map then acts as a diagonal matrix
(the eigenvalue matrix D). having applied the map in this simple form, we then
switch back to the standard basis. hence,

D = S−1AS .

the switch matrix contains the eigenvectors of A as columns, i.e.,

S =





| | |
v1;1 v1;2 · · · vr;dr

| | |



 .

to prove that D = S−1AS we show that SDw = ASw for all w ∈ V . due to
linearity, if we aim at proving a statement for all w ∈ V , it suffices to show this
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statement for all basis vectors. consider the standard basis vector

e1 =











1
0
...
0











.

we obtain
Se1 = v1;1 ⇒ ASe1 = λ1v1;1 .

on the other hand,

De1 = λ1e1 ⇒ SDe1 = λ1Se1 = λ1v1;1 .

we conclude that SDe1 = ASe1; analogously, we obtain SDei = ASei for all
standard basis vectors ei and thus SDw = ASw for all w ∈ V . this completes
the proof of the claim.
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EXAMPLE

Consider the map A on C3 given by

A =





3 + 2i −2 − 2i −4
1 + i −i −2
1 + i −1 − i −1



 .

The characteristic polynomial is

|A − λ1| = −λ3 + (2 + i)λ2 − (1 + 2i)λ + i ;

it is not difficult to convince oneself that the factorization into roots is

|A − λ1| = −(λ − i)(λ − 1)2 .

Therefore, the eigenvalues are

λ1 = i (m1 = 1, d1 = 1) , λ2 = 1 (m2 = 2) .

To see whether A is diagonalizable there must exist two linearly
independent eigenvectors associated with the eigenvalue λ2 (i.e.,
d2 = dim E2 = 2 is required). A straightforward computation shows
that

E1 =
〈





2
1
1





〉

, E2 =
〈





1
1
0



 ,





1 − i

0
1





〉

,

hence d2 = dim E2 = 2 indeed; accordingly, there exist 3 linearly
independent eigenvectors and A is diagonalizable.
The switch matrix S is

S =





2 1 1 − i

1 1 0
1 0 1



 ,

its inverse is

S−1 =





−i i 1 + i

i 1 − i −1 − i

i −i −i



 .

It is straightforward to check that

S−1AS = D = diag(i, 1, 1) .
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