- 1 Alice circles planet X freely for a long time on a circular orbit of radius R, while her twin Bob remains motionless on the surface of the planet, at radius r_0 . For $r \ge r_0$ the geometry of the gravitational field of the planet X is described by the Schwarzschild metric with mass $0 < m < r_0/2$. Derive a necessary and sufficient condition on R which guarantees that, on meeting Bob again, Alice will have the same age as Bob. You should assume that the time of travel back and forth from radius R to radius r_0 can be neglected compared to the time that Alice spent on the circular orbit.
- 2 Recall that in one of the previous problem sheets we have derived the identity

$$\nabla^{\mu}\nabla_{\mu}f = \frac{1}{\sqrt{|\det g_{\alpha\beta}|}}\partial_{\mu}\left(\sqrt{|\det g_{\alpha\beta}|}g^{\mu\nu}\partial_{\nu}f\right) \,.$$

i. Show that, for weak gravitational fields $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$, with $h_{\mu\nu}$ appropriately small, the *wave coordinates* condition

$$\nabla^{\mu}\nabla_{\mu}x^{\alpha}=0$$

approximately reads

$$\partial_\mu h^\mu{}_\nu = \frac{1}{2} \partial_\nu (h^\alpha{}_\alpha) \; , \label{eq:eq:elements}$$

where $h^{\alpha}{}_{\beta} = \eta^{\alpha\gamma} h_{\gamma\beta}$.

3 Let $h_{\alpha\beta} = \Re(A_{\alpha\beta} \exp(ik_{\mu}x^{\mu}))$, where \Re denotes the real part, be a linearized gravitational wave in TT gauge (i.e., $A^{\alpha}{}_{\alpha} = 0 = A_{\alpha\beta}k^{\beta}$). Show that, in the linear approximation,

$$R_{\alpha\beta\gamma\delta}k^{\delta}=0$$

4 Let φ satisfy the wave equation in a general space-time with Lorentzian metric g, $\Box_g \varphi := \nabla^{\mu} \nabla_{\mu} \varphi = 0$. Set

$$T_{\mu\nu} = \partial_{\mu}\varphi \partial_{\nu}\varphi - \frac{1}{2} \nabla^{\alpha}\varphi \partial_{\alpha}\varphi g_{\mu\nu} \; .$$

Show that $T_{00} \ge \sqrt{\sum_i (T_{0i})^2}$. Show that this is equivalent to the statement that for any future-pointing timelike vector u^{μ} , the vector $T^{\mu}{}_{\nu}u^{\mu}$ is timelike past-pointing.

Show that *T* satisfies the *dominant energy condition*: $T_{\mu\nu}X^{\mu}Y^{\nu} \ge 0$ for all timelike future directed *X* and *Y*. Is this condition satisfied for the energy-momentum tensor of dust?