BASIC NOTES ON WAVE EQUATIONS

JAMES D.E. GRANT

These notes are a review of basic material on wave equations and the initial value problem.
Section 1] is essentially a summary of the material contained in pp. 6569 of Evans [I] (see, also,
Chapter 1 of Sogge []). Most of the material in Section [2[in, for example, Chapters 3.3-3.5 of [5].
For more information on Schwartz spaces, tempered distributions, etc, see, for instance, Chapter 5
of [2]. A good introduction to all of this material (and much more) are the recent lecture notes
by Klainerman [3].

1. THE WAVE EQUATION ON MINKOWSKI SPACE

We want to solve the (inhomogeneous) wave equation

Ut — Au = f, (11)
subject to appropriate boundary conditions and initial conditions. Here ¢ > 0 and A := Y | %

where x := (z!,...,2") lies in U € R", an open subset of R". Throughout, we will use subscripts

to denote partial derivatives, so

ou _
o Uty = otox’
Given a function f: (0,00) x U — R, we view (1.1} (along with boundary conditions introduced

below) as an equation for the unknown w: [0,00) x U — R, i.e. u(t,x). In the case U = R,
appropriate boundary conditions would be to impose that

u(0,x) =g(x),  w(0,x) = h(x),

where g, h are (for example) smooth functions with compact support on R"H We define the wave
operator

U = etc.

O:=0? — A,
in terms of which the wave equation takes the form
Cu = f. (1.2)
We will often simplify to the homogeneous problem with f = 0, i.e.
Cu = 0, (1.3)

again subject to appropriate boundary conditions.

1.1. n = 1. In the case n = 1, taking U = R, we consider the homogeneous wave equation
Utp — Uz =0 for (¢,z) € (0,00) x R
with initial conditions
u(0,2) = g(x), ug(0,2) = h(x) for zeR.
Proposition 1.1. There exists a unique solution u(t,x) of this problem, given by the d’Alembert
formula

[g(z +t) + gz —t)] + ;/wt h(s)ds. (1.4)

N

u(t,x) =

Date: 8 November, 2012.
We will not be concerned with optimal regularity issues in this course, and will assume that all data such as
f,g,h are as well-behaved as necessary for our arguments to be classically valid.



2 JAMES D.E. GRANT

Proof of existence. To prove existence, we simply show that the d’Alembert formula gives a func-
tion u with all of the required properties. It follows directly from (1.4]) that u satisfies the required
boundary. Now, note that we can write

u(t,z) = F(t+o) + G(t — z)

where
1 1/ 1 1 v
F(u)=5g9(u)+5 [ hs)ds,  G(u)=59(u)+5 [ hls),
2 2 /.. 2 2/,
where ug is any fixed real number. Since F(t+x) and G(t—x) separately satisfy the wave equation,
it follows that w, as defined in (|1.4)), satisfies the wave equation. O

In the standard approach, the d’Alembert formula is constructed as the unique solution of the
wave equation. Rather than pursue this course, uniqueness of the solution (1.4]) will follow from
the following, more general, discussion.

1.2. Energy methods.

1.2.1. Uniqueness. We return to the more general problem, assuming that U < R™ is a bounded,
open set with smooth boundary oU. Given T > 0, we define the sets

Ur:=(0,T] xU
and

Ty = Ur\Ur = ({0} x U) u ([0, T] x 0U) .

Theorem 1.2. Given functions g: 'y — R and h: U — R, if there exists a solution of the
following problem

Ou=0 inUr (1.5a)
u=g onlr (1.5b)
ug=nh on{0} xU, (1.5¢)

then this solution is unique.

Proof. Let u, @ be solutions of (1.5) and define w := u — @. It follows that w satisfies

Ow=0 inUp (1.6a)
w=g¢g onlrp (1.6b)
wy =h on {0} x U, (1.6¢)

Define the energy
1
E(t) := 5/ [wt(t,x)2 + |Vw(t,x)|2] dx,
U
where V := (0,1,...,0,n) denotes the spatial gradient and

|Vwl|? = i 0w’ = w;w;
- 6Il - (] (3]

i=1

employing the Einstein summation convention. We then have

d

—E(t) = / [wiwg + wiwy; ] dx
i .

= / [wrwy + div (wy grad w) — wy div grad w] dx
U

=/wt (wy — Aw) dx+/ wy grad w - dS,
U U
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where we have used Stokes’s theorem in the final line. The first term vanishes, since wy; — Aw = 0.
Also, since w = 0 on the set [0,T] x U, it follows that w; = 0 on this set. Therefore w¢|oU = 0,
so the second integral also vanishes. Therefore

d

dt
so E(t) = E(0). The boundary conditions state that w;(0,x) = 0. Moreover, w(0,x) = 0 for all
x € U, hence Vw(0,x) = 0. Therefore F(0) = 0 and thus E(t) = 0. It follows that w, = Vw =0
on Uy, so w is constant. Since w(0,x) = 0, it follows that w = 0 on Ur and therefore & = v. O

E(t) =0,

Remark 1.3. The same argument holds for the inhomogeneous problem, with [Ju = f in (|1.5)).

Proof of uniqueness in Proposition[I.1 Taking n = 1 and U = R, uniqueness of the d’Alembert
solution follows from Theorem [[.2l O

1.2.2. Domain of dependence. In the d’Alembert formula , u(t, x) depends only on the values
of g at © =t and on the values of h in the interval [z — ¢, + t]. As such, the values of g and h
outside of the past null cone of the point (¢,2) have no influence on the value of the solution u at
that point. This “finite speed of propagation” phenomenon is general feature of wave equations,
which we can again analyse by energy methods.

Notation. Given x € R™ and r > 0, we denote by B(x,r) the open ball {y € R"||y — x| < r}
and by S(x,7) = 0B(x,r) the sphere {y € R"||y — x| =r}. We will also consider the closed ball
B(x,r) :={yeR"||ly — x| <r} = B(x,r) u S(x,7).
Let tg > 0 and x¢ € R™. We define the cone
CZ= {(t,X)|0<t<t07|X—X0| <t0—t}.
We then have the following finite-propagation speed result.

Proposition 1.4. Let u be a solution of (Ju = 0 in (0,00) x R™ with u = u; = 0 on {0} x B(x, o).
Then u =0 on C.

Proof. Let
B(t) = / [ (£, %)? + |Wu(t, x)|?] dx.
2 B(xo,to—t)
For € > 0, we then have

M — i / [ut(t—i—e,x)Q + |VU(t+€,X)|2] dx
B(Xo,to—t—e)

€ 2e

_ / [ue(t, %)% + |Vu(t, x) 2] dx
B(xq,to—t)

1
= — [ut(t +6,%)2 4+ | Vu(t + e, x) > — ug(t, x)? — |Vu(t,x)|2] dx
2¢ B(xq,to—t—e¢)

1

S — [ut(t,x)2 + |Vu(t7x)|2] dx
2e B(xo0,to—t)\B(x0,to—t—e)

1

_ 7/ o1 [us(t, %)% + |Vu(t, )|?] dx + O(e)
2 B(xo,toft)

1 to—t

/ [ue(t,x)* + | Vu(t,x)[?| dSdr.
S(xo,r)

B 276 to—t—e
As € — 0, we deduce that
d 1
7E(t) = / 6t [’LLtUtt + uiuti] dx — */ [U? + |VU|2] ds
dt B(Xo,to—t) 2 S(Xo,to—t)

1
= / Orug [uge — Au] dx + / uVu-ndS — 7/ [uf + |Vu|?] dS,
B(Xo,tgft) 2 S(Xg,to*t)

S(Xo,toft)
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where n denotes the unit normal to S(xg,r). Cauchy’s inequality yields
1 1
|uyVu - n| < 3 [uf + [Vaul?] < 3 [uf + [Vul?],

where the final inequality follows from the fact that n is a unit vector. Since [Ju = 0, it therefore
follows from the above formula that

d

aE(t) <0.
Hence E(t) < E(0) = 0. Since E(t) = 0, it follows that E(t) = 0 for 0 < t < tg. Again, this
implies that u; = Vu = 0, so u is constant. Therefore u = 0 as required. O

Remark 1.5. Energy estimate techniques can be applied to considerably more general hyperbolic
partial differential equations. See, e.g., [4] for more information on this and other techniques.

1.3. Spherical means and n > 2. Suppose we wish to solve
u=0 in (0,00) x R™, (1.7a)
u=g, u=nh on {0} x R™. (1.7b)

Plan. We wish to derive explicit formulae for u(t,x) in terms of g, h. The plan is to average u over
spheres. The averages of u then satisfy the Euler—Poisson-Darboux equation which, for n odd, we
can solve using the one-dimensional d’Alembert formula. We then recover u from the limit of its
average over smaller and smaller spheres.

Averages. Let x € R™ and r > 0. Let |S(x,r)| and |B(x,r)| denote the (n — 1) and n-dimensional
volume of the (n — 1)-dimensional sphere S(x,r) € R” and the n-dimensional ball B(x,r) c R",
respectively. Denoting the (n — 1)-volume of the unit sphere S"~! in R™ by w,, 1, we therefore

have

|S(x,7)| = WL

We note that .,
|B(x,7)| = / 15(x, 8)| ds = L = L |S(x, 7).
0 n n

Given a measurable function f on R™, and a measurable set £ € R", we define the average

L=t

We will be particularly interested in the averages over balls and spheres, i.e. fB (r) f and fs(x . f.

We now return to the wave equation (1.7). Let x € R™, ¢ > 0 and r > 0. We define the averaged
quantities

U(x,t,r):= ]i( )u(t,y) dS(y),
G(x,r) = ]i(xm) 9(y) dS(y),

H(x,r) = 7[5 L Has)

Remark 1.6. The aim is to show that U(x,t,r) satisfies a wave equation in (¢,r) space, which
we can solve using the d’Alembert formula. Given U(x,t,r) for r > 0, we then recover u(t,x) as
lim, 04 U(x,t,7).

Proposition 1.7. Let u satisfy (L.7) and x € R™ be given. Then U satisfies

U (x,t,7)

or ("o, U(x,t,r)) =0 in (0,00) x (0, 00), (1.8a)
U=G, oU=H on {0} x (0, 00). (1.8b)

- T.nfl
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Proof. Let dw denote the volume element on the unit sphere in R™. We then have, for ¢ > 0,

U(X,t,r—l—e)—U(x,tﬂ“)_l # y - 1 .

€ - € <S(X’ T+ 6) /S(x7r+€) (t’ y) dS(y) S(X7 T) s/S'(x,r) (t’ y) dS(y))
1

e (/Snl u(t,x + (r + €)y) dw(y) — /Sni1 u(t,x +1y) dw(y))

1 / 1 [u(t,x+ (r+e)y) —u(t,x +ry)] dw(y)
Wp—1 Jgn—-1 €

1
Wn—1

—

/ n- Vu(t,x +ry) dw(y) as € — 0,
Sn—1

where n denotes the unit normal to the sphere S(x,r) € R™. We therefore have

o U(x, t,r) = — / n- Va(t, x +ry) du(y)
Sn 1

Wn—1

1 1
TS Sy VMV ASO) W/ VY ESE)

Eexll ) B
= V - Vu(t,y)dy = Au(t,y)dy
5o oo Y Y = ST S S0V

S ][ Au(t,y) dy
n B(x,r)

Differentiating, and using the fact that 0,|B(x,r)| = [S(x,7)|, we have

1 r 1
2 - A —Op | =—— A
o:U(x,t,r) n]i(xm) ut,y)dy + -0 (|B =) |/ oo U(ty)dy)
r |S(z, )| |
— Au(t,y)dy — —
n][B(x,r) ( y) Y |B X, ’I" (x,7) y

1
= < - 1) ][ Au(t,y)dy +
n B(x,r)
We also have

Or (/B(x,r) Aul(t,y)d > (/ /xs u(t,y des) u(t,y)dS(y)

and therefore

U (%, 1, 7) = (1 _ 1) ]i Ay dy +][ Au(t,y) dS(y).

n S(x,r)

‘We now have

ﬁUmuﬂ=f mﬁdﬂﬂw=f Au(t,y) dS(y)
S(x,r) S(x,r)

= 03U(X7 t,r) — (1 — 1) ][ Au(t,y)dy
n B(x,r)

= U (x, t,7) — (1 _ 1) Do U(x,t,1)
T

n

= Lo (Ut

Tnfl
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as required. In order to derive the boundary conditions, we note that
U0 = f w03 = f o) dS(y) = Gler)

and similarly for 6;U(x,0,7).

Wave equation for n = 3. For n = 3, the average U(x,t,r) satisfies

?U(x,t,1) = %2& (r*o.U(x,t,r)).

Letting U(x,t,1) = ﬁ(x,t, r)/r, we find that
U (x,t,r) = 02U (x,t,r).
In addition,
U(x,0,7) = rU(x,0,7) = rG(x,r) = G(x,r),
2,U(x,0,7) = rd,U(x,0,7) = rH(x,r) = H(x,r).

It follows from the d’Alembert formula that, for ¢ > r, we have
t+r

mxumzé(é@¢+m—é@¢—m)+§ H(x, ) ds.

t—r

We therefore have

U (x,t
u(t,x) = lim U(x,t,r) = lim Ulx,t,r)
r— r— r

1/~ ~ L[
r1—1>1(1;1+ [% (G(x,t +7r)—G(x,t— T)) +o - H(x,u) ds]

= G'(x,t) + H(x,1)

= 0, (tG(x, 1)) + tH (x, 1)

=1t0,G(x,t) + G(x,t) + tH(x,1)

— G0+ [thly) + 9(v)] dS()
S(x,t)

For the first term, we have

1
t0:G(x,t) =t | 5— g(y)dS(y
(e t[w(x,m sy ") ()1
¢ lim ~ ! / (¥) dS(y) — o (v) dS(y)
=ithm — | = g\y Y) a1 g\y y
e | 1800t + Ol Jsimrne 1560 D] Jsen
_ t lim g(X+ (t+€)y) —g(X+ty) dw(y)
Wp—1 €0 Jgn—1 €
t

o [ @ Vel y)duty)

. (Ve s

- [ &% Vayasty)
S(x,t)
We have therefore derived the Kirchoff formula:

u(t, x) = f [th(y) + 9(y) + {y — x, Vg(y))] dS(¥)
S(x,t)
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Remarks 1.8. (1) Unlike in one-dimension, the formula for u(t,x) depends on the derivative
of g. In higher dimensions, we will require higher derivatives of g. As such, regularity of
g plays a more significant role in higher dimensions.
(2) The value of u(t,x) only depends on the values of g, h and Vg on the sphere S(x,t).

Wave equation for n = 2. The method of descent. The above construction cannot be used
in the case n = 2. We proceed rather by embedding the two-dimensional problem into the three-
dimensional problem and using the 3D result. Given x = (xl,:c ) e R?, let X = (2,22, 23) e R?
be a point in R? that projects to x under projection to the (z!,x?) plane. We want u(t, x) to be
a solution of the problem

[u=0  in (0,00) x R?, (1.9a)
u=g, u=nh on {0} x R2. (1.9b)
we define corresponding quantities on R? by trivially extending in the 23 direction, i.e.
WL = u(tx),  9F) = g(x), ) = h(x).
It then follows that @, etc, satisfy the three-dimensional conditions
Ou=0 in (0,00) x R3, (1.10a)
(0,%) = g(X), wW(t,X)=h(X) TeR3, (1.10b)

where [J and A denote the n = 3 wave operator and Laplacian, respectively. From the discussion
in the previous section, we therefore deduce that

z@@=me@GﬁU¢wwm)wﬁuﬁmww, (L.11)

51 = {Fe R |ly Xl =t} = {y e B[y = +/12 — ly —x2. }

denotes the two-sphere in R3 with centre X and radius ¢, and dS denotes the natural area element
on S(X,t). We therefore have

N = 1 —
]é 93)dS(¥) = 1= | g y?) dS(y", 2, y%)
S(%.t) mt? J5(=.0)

where

) dS(y,y%)

int? yxALWTyW/EﬁWﬂQ
= 9(y) dS(y,y*)
drt? /y x|= o/y NCErEE

For simplicity, letting x = 0 (alternatively let z := y — x and work with z rather than y), the

induced metric on the set 3% = /12 — |y|§2 is

2

1
ldy|* + (dy®)? = |dy|* + | ———=—2y -dy | =|dy|*+ o (y - dy)?
2.,/t2 — |y|2, [y [z
(y')? 1\2 (v°)? 22
= (1 d 1 d
(1 =g @+ (1 =g =g ) @
1,2
2y'y dydy?

It follows that
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Putting the x dependence back in, we have

- y —x2 \"*
dS(y,y®) = <1 n > dy.

Therefore,

< I y —x> \"
3(3) dS(3) = o(y) (1 n ) dy
]L; 2mt? ly—x|=0 2 — |y - X|2
1 d

9(y) Y

27t Jeen (12~ ly = x[)!

t ][ dy
=35 g\y )
2 e (12— ly —x[)"?
where B(x,t) now again denotes the ball in R?. From (1.11)), we therefore deduce that

12 dy t? dy
u(t,x) =0 —][ g(y + —][ h(y .
(t,%) t<2 B(xt) ( )(t2—|y—x|2)1/2 2 /B ()(t2—|y—x|2)”2

Finally, we have

o tz][ 9(y) Y ] L 9(y) o
"\ 2 Jaeen (2 — |y — x[2)"/? "\ 21861 Jppn (2 — |y — x[2)"/?

=0 i/ g(x + tz) _ Mz
"\ 27 Jpo) (1 |z[2)

S g+ i)+ e Vo4 1)y —

2 B(0,1) (1- |Z|2)l/2
L[ )+ —x Ve oy
27 () ’ t(t2 — |y —x[2)"/*
t ][ dy
=2 [9(y) + <&y —x, Vy(y)]
2 B(x,t) (t2 _ |y _ X|2)1/2

We therefore have the Poisson formula for the solution of the two-dimensional wave equation

u(t,x) = % ]{;(x,t) [ta(y) + Ky —x, Vg(y)) + t*h(y)] & |ydi VS

Remark 1.9. In two dimensions, u(t,x) depends on the data g, h and Vg on the whole of the ball
B(x,t), rather than just on the boundary S(x,t) which was the case for n = 3.
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2. FOURIER METHODS
An alternative method of constructing solutions of the wave equation is by means of Fourier
transformsﬂ Given u € L*(R"), we define the Fourier transform
1 _
~ _ L ix-€
) = (Fu) (€)= Gy [ e €
We list some properties of u:
(1) @e L*(R"), since [4(€)] < ryrz [ul L1 @ny < -
(2) @ is continuous. (This follows from the dominated convergence theorem.)
(3) The Riemann—Lebesgue lemma: u(§) — 0 as |§| — .

It is convenient to introduce a space of functions that is closed under Fourier transformﬁ Given
multi-indices a = (a1,...,ay), 8= (B1,...,0n), with a1,..., 3, non-negative integers, we define

a a1 a Qn
a._ 01 an 8. 2 N
% 1= x] ", D7 <0x1> ((%n) .

Given a smooth function v € C*(R"™) and multi-indices «, 8, we define the semi-norm

Da,p(u) 1= sup |:ro‘Dﬁu(x)|.
xeR™

Letting |a| :== a1 + - - - + a, ete, we define the increasing family of semi-norms
Qu(w) == D) Pas(u).
a,f<k

Definition 2.1. The Schwartz space of rapidly decreasing functions is defined to be
L (R") :={ue C*(R") |pa,s(u) < oo, for all multi-indices a, 5} .
We also define the space of slowly increasing smooth functions
O(R") := { f € C*(R") [¥a, 3N € No,3C 2 0 s.t. ¥x € R, |D*f(3)] < C (1 + x)" }
Remarks 2.2.

(1) If w e L(R™), then u and all of its derivatives fall off faster than any inverse power of
as |x| — oo. In particular, elements of u lie in L'(R") and have a well-defined Fourier
transform.

(2) Tue.#(RY) and fe O(R™) then fu e .7 (R").
Proposition 2.3. ue Z(R") then i € Z(R"), i.e. F: #(R") — . (RM).
Proof.

£2DP7(€) = const. / D2 («Pu(x)) €€ dx.

Therefore

gapfa(g)‘ < /|D§; (zPu(a))| dx < oo,
since the integrand is rapidly decreasing. O

We also define the operator

* L 1 u e*ixf
(P @) = o [ w€)e < e

By the same argument as in Proposition we deduce that F*: .7 (R") - & (R").

2Most of the material in this section is derived from Chapters 3.3-3.5 of [5]. For more information on Schwartz
spaces and tempered distributions see, for instance, Chapter 5 of |2].

3Note that, given u € L! (R™), in general 4 ¢ L'(R™), so the L' property is not preserved under Fourier
transform.
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Theorem 2.4 (The Fourier inversion formula).
FoF*=F*oF=1d
on (R™), i.e. the operators F and F* are inverses on . (R™).

We will also be interested in the dual space #/(R™) of tempered distributions, i.e. continuous
linear maps . (R™) — (CE| More specifically:

Definition 2.5. A linear map o: #(R") — C lies in #/(R™) if there exists C' > 0 and N € Ny
such that
|(o,u)| < CQn(u),  Vue S (R").

Remark 2.6. Given a sequence (uy) in (R™), we say that uy — 0 if py g(u) — 0 for all «, 5.
Definition [2.5|is then equivalent to stating that a linear map o: .#(R™) — C lies in .#/(R") if for
all sequences (ug) in . (R"™) with ux — 0 we have (o, ug) — 0 as k — o0.
We define the action of F and F* on ./(R™) by duality, so
(Fo,u) := (o, Fu), Yu e S (R"),

and similarly for 7*. The inversion formula on .7 (R™) then implies that F o F* = F* o F = 1d
also holds on .'(R™).

We consider the wave equation [Ju(t,x) = 0 on (0,00) x R™.
The point is that u satisfies the Fourier transform of the wave equation:

o2 (L&) + €[, €) = 0. (2.1)
Proof.
Fite) @1 e
atQ = ﬁ (27‘(‘)”/2 /U(t;x)e dx
1 1X . .
= = @ / 6t2 ¢ dx (because u rapidly decreasing)
1
zx 13
27r)"/2 /Au (t,z)e™ s dx
(2 ) S / (t, x)Ae™ ¢ dx (integration by parts and w rapidly decreasing)
e n,
1 2 ix-€
e /U(tal’)|€| e dx
= —[¢ffa(t, &).
O
We assume the initial conditions
(0,6) =5(6),  :a(0,€) = h(&).
The corresponding solution of (2.1)) may then be written as
~ sin t ~
t.6) = (&) TS + 3(€) cos €l (22
Note that sm‘é‘f‘t and cos (|£]t) are slowly increasing smooth functions of £, i.e. elements of O(R").

Given F € O(R") and o € .¥'(R"), then Fo € .#'(R™), where multiplication is defined by the
relation
(Fo,u) := (o, Fu), Yu e . (R™).

Given §,h e . (R™), it follows that the @(t,-) defined in equation (2.2)) is a well-defined element
of Z(R™) for all ¢ > 0. The inversion formula then gives u(t,-) € Y’(R") fort >0

41t is conventional to work with complex-valued functions.
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Example 2.7. If g, h € /(R"), then G.he Z(R™). It follows that the functions %ﬁ(é) and

cos (|€|t) g(€) lie in Z(R™), for all ¢ > 0, and hence that 4(t,-) € Z(R™) for ¢t > 0. Therefore,
u(t,-) € L(R™) for all t > 0.

Example 2.8. Take g =0, h = § € ./(R™). It then follows that g = 0 and h=1e€ &' (R™). The
solution of the corresponding initial value problem is called the fundamental solution of the wave
equation

1 sin (|€]¢)
(2m)m/2 gl

2.1. L? estimates. Finally, we study some L? estimates for solutions of the wave-equation using
the explicit formula (2.2)). If u € L?(R") then @ € L?(R") and we have the Parseval identity

R(t,€) =

lull 2 gny = 18l 2 gny -
Noting that
sin (|€]t)
13

<t leos(lel) <1
we deduce from ([2.2) that

(s M z2ny = 1l )l 2 ggn)
7 0oy sin ([€]2)

= h(£)T + §(&) cos (€]t)

sin ([€[t)
€]

L3 (R™)

h(€)

<

+ () cos (1€16) | s
L2(R")

stHﬁ

L2®n) + 190 L2 gy

=1 ”h”L2(R") + Hg“L2(R") :

Similarly,

t ° 2 n < h 2 n g .
Mgy < Pblgageoy + 161360, o

Note that (F(Vf)) (&) = i€f(&). Therefore
IV Ty = [ 19500 ax= [ (7 on @ de = [ 1| de = ieifie)

We therefore deduce that

2

LE(R™)

flue (2, ')||L2(R") s ||h||L2(]R") + HV9“L2(R")'

In particular, it is sufficient that f, g € L2(R™) (and, hence, f, g € L?>(R™)) in order to define .
For 0,4, it is sufficient that h € L?(R™) and Vg € L*(R"). Similarly, we find that

(55

Jfe 2y < 1€

+|
L2(R") L2(R")

and, therefore,
Hutt”H(Rn) S ||Vh||L2(Rn) + ”VVgHL?(R") :
In this approach, it is therefore natural that g,h should be elements of Sobolev spaces: h €
WL2(R") = HY(R"), g € W32(R") = H?(R"). Recall the following.
Definition 2.9. Let D € R™, k€ Ny, 1 < p < o0, then
WHP(D) := {u e LP(D) |there exists D®u € LP(R") for 0 < |a| <k},

where the derivatives D%u are defined in the distributional sense. We define the norms

1/p
HUHWW(D) = <Z /D |D%u(x)[” dX) .

a<k
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We let H*(D) := Wk2(D) and note that LP(D) = W%?(D).
Remark 2.10. Tt can be shown that W¥P(D) are Banach spaces, and H*(D) are Hilbert spaces.
We note that, if g € H?(R"), h € H*(R"), then

/g2dx+/|Vg|2dx+/|VVg|2dx< o, /thx+/|Vh|2dx< 0.

For g,h € Z(R"™), all of the above integrals are finite. As such, the Sobolev solutions are weaker
than the solutions in . (R™).
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