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Chapter 1

The Einstein equations

1.1 The nature of the Einstein equations

The vacuum Einstein equations with cosmological constant Λ read

Gαβ + Λgαβ = 0 , (1.1.1)

where Gαβ is the Einstein tensor,

Gαβ := Rαβ −
1

2
Rgαβ , (1.1.2)

while Rαβ is the Ricci tensor and R the scalar curvature. We will sometimes
refer to those equations as the vacuum Einstein equations, regardless of whether
or not the cosmological constant vanishes. Taking the trace of (1.1.1) one
obtains

R =
2(n+ 1)

n− 1
Λ , (1.1.3)

where, as elsewhere, n + 1 is the dimension of space-time. This leads to the
following equivalent version of (1.1.1):

Ric =
2Λ

n− 1
g . (1.1.4)

Thus the Ricci tensor of the metric is proportional to the metric. Pseudo-
Lorentzian manifolds the metric of which satisfies Equation (1.1.4) are called
Einstein manifolds in the mathematical literature; see, e.g., [25].

Given a manifold M , Equation (1.1.1) or, equivalently, Equation (1.1.4)
forms a system of partial differential equations for the metric. Indeed, recall
that

Γαβγ = 1
2g
ασ(∂βgσγ + ∂γgσβ − ∂σgβγ) , (1.1.5)

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ + ΓασγΓσβδ − ΓασδΓ
σ
βγ , (1.1.6)

Rαβ = Rγαγβ . (1.1.7)

We see that the Ricci tensor is an object built out of the Christoffel symbols and
their first derivatives, while the Christoffel symbols are built out of the metric

3



4 CHAPTER 1. THE EINSTEIN EQUATIONS

and its first derivatives. These equations further show that the Ricci tensor
is linear in the second derivatives of the metric, with coefficients which are
rational functions of the gαβ’s, and quadratic in the first derivatives of g, again
with coefficients rational in g. Equations linear in the highest order derivatives
are called quasi-linear, hence the vacuum Einstein equations constitute a second
order system of quasi-linear partial differential equations for the metric g.

In the discussion above we have assumed that the manifold M has been
given. Such a point of view might seem to be too restrictive, and sometimes it
is argued that the Einstein equations should be interpreted as equations both
for the metric and the manifold. The sense of such a statement is far from
being clear, one possibility of understanding that is that the manifold arises
as a result of the evolution of the metric g. We are going to discuss in detail
the evolution point of view below, let us, however, anticipate and mention the
following: there exists a natural class of space-times, called maximal globally
hyperbolic, which are obtained by the vacuum evolution of initial data, and
which have topology R×S , where S is the n-dimensional manifold on which
the initial data have been prescribed. Thus, these space-times have topology
and differentiable structure which are determined by the initial data. It turns
out that the space-times so constructed are sometimes extendible. Now, there do
not seem to exist conditions which would guarantee uniqueness of extensions
of the maximal globally hyperbolic solutions, while examples of non-unique
extensions are known. Therefore it does not seem useful to consider the Einstein
equations as equations determining the manifold beyond the maximal globally
hyperbolic region. We conclude that in the evolutionary point of view the
manifold can be also thought as being given a priori, namely M = R × S .
We stress, however, that there is no natural time coordinate which can always
be constructed by evolutionary methods and which leads to the decomposition
M = R×S .

Now, there exist standard classes of partial differential equations which are
known to have good properties. They are determined by looking at the algebraic
properties of those terms in the equations which contain derivatives of highest
order, in our case of order two. Inspection of (1.1.1) shows (cf., e.g., [75]) that
this equation does not fall in any of the standard classes, such as hyperbolic,
parabolic, or elliptic. In retrospect this is not surprising, because equations
in those classes typically lead to unique solutions. On the other hand, given
any solution g of the Einstein equations (1.1.4) and any diffeomorphism Φ, the
pull-back metric Φ∗g is also a solution of (1.1.4), so whatever uniqueness there
might be will hold only up to diffeomorphisms. An alternative way of describing
this, often found in the physics literature, is the following: suppose that we have
a matrix gµν(x) of functions satisfying (1.1.1) in some coordinate system xµ.
If we perform a coordinate change xµ → yα(xµ), then the matrix of functions
ḡαβ(y) defined as

gµν(x)→ ḡαβ(y) = gµν(x(y))
∂xµ

∂yα
∂xν

∂yβ
(1.1.8)

will also solve (1.1.1), if the x-derivatives there are replaced by y-derivatives.
This property is known under the name of diffeomorphism invariance, or co-
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ordinate invariance, of the Einstein equations. Physicists say that “the diffeo-
morphism group is the gauge group of Einstein’s theory of gravitation”.

Somewhat surprisingly, Choquet-Bruhat [68] proved in 1952 that there exists
a set of hyperbolic equations underlying (??). This proceeds by the introduction
of so-called “harmonic coordinates”, to which we turn our attention in the
next section. Before doing that, let us pass to the derivation of a somewhat
more explicit and useful form of the Einstein equations. In index notation, the
definition of the Riemann tensor takes the form

∇µ∇νXα −∇ν∇µXα = RαβµνX
β . (1.1.9)

A contraction over α and µ gives

∇α∇νXα −∇ν∇αXα = RβνX
β . (1.1.10)

Suppose that X is the gradient of a function φ, X = ∇φ, then we have

∇αXβ = ∇α∇βφ = ∇β∇αφ ,

because of the symmetry of second partial derivatives. Further

∇αXα = 2gφ ,

where we use the symbol

2k ≡ ∇µ∇µ

to denote the wave operator associated with a Lorentzian metric k; e.g., for a
scalar field we have

2gφ ≡ ∇µ∇µφ =
1√

−det gαβ
∂µ(
√
−det gρσg

µν∂νφ) . (1.1.11)

For gradient vector fields (1.1.10) can be rewritten as

∇α∇α∇νφ−∇ν∇α∇αφ = Rβν∇βφ ,

or, equivalently,

2gdφ− d(2gφ) = Ric(∇φ, ·) , (1.1.12)

where d denotes exterior differentiation. Consider Equation (1.1.12) with φ
replaced by yA, where yA is any collection of functions,

2gdy
A = dλA + Ric(∇yA, ·) , (1.1.13)

λA ≡ 2gy
A . (1.1.14)

Set

gAB ≡ g(dyA, dyB) ; (1.1.15)

this is consistent with the usual notation for the inverse metric except that we
haven’t assumed (yet) that the yA’s form a coordinate system. (Furthermore,
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for simplicity we write g instead of g[ for the metric on T ∗M .) By the chain
rule we have

2gg
AB = ∇µ∇µ(g(dyA, dyB))

= ∇µ(g(∇µdyA, dyB) + g(dyA,∇µdyB))

= g(2gdy
A, dyB) + g(dyA,2gdy

B) + 2g(∇µdyA,∇µdyB)

= g(dλA, dyB) + g(dyA, dλB) + 2g(∇µdyA,∇µdyB)

+2Ric(∇yA,∇yB) . (1.1.16)

Let us suppose that the functions yA solve the homogeneous wave equation:

λA = 2gy
A = 0 . (1.1.17)

The Einstein equation (1.1.4) inserted in (1.1.16) implies then

EAB ≡ 2gg
AB − 2g(∇µdyA,∇µdyB)− 4Λ

n− 1
gAB (1.1.18a)

= 0 . (1.1.18b)

Now,

∇µ(dyA) = ∇µ(∂νy
A dxν)

= (∂µ∂νy
A − Γσµν∂σy

A)dxν . (1.1.19)

Suppose that the dφA’s are linearly independent and form a basis of T ∗M , then
(1.1.18b) is equivalent to the vacuum Einstein equation. Further we can choose
the yA’s as coordinates, at least on some open subset of M ; in this case we
have

∂Ay
B = δBA , ∂A∂Cy

B = 0 ,

so that (1.1.19) reads

∇BdyA = −ΓABCdy
C .

This, together with (1.1.18b), leads to

2gg
AB − 2gCDgEFΓACEΓBDF −

4Λ

n− 1
gAB = 0 . (1.1.20)

Here the ΓABC ’s should be calculated in terms of the gAB’s and their derivatives
as in the usual equation for the Christoffel symbols, and the wave operator
2g is understood as acting on scalars. We have thus shown that in “wave
coordinates”, as defined by the condition λA = 0, the Einstein equation forms a
second-order quasi-linear wave-type system of equations (1.1.20) for the metric
functions gAB. This gives a strong hint that the Einstein equations possess
a hyperbolic, evolutionary character; this fact will be fully justified in what
follows.
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Another completely explicit form without imposing any coordinate conditions, which
is not very enlightening, and fortunately almost never needed, reads

Rνρ[g] =
1

2

{
∂

∂xδ

(
gδη

[
−∂gρν
∂xη

+
∂gνη
∂xρ

+
∂gρη
∂xν

])
− ∂

∂xρ

(
gδη

∂gδη
∂xν

)}
+

1

4

{
gλπ

(
∂gδπ
∂xλ

+
∂gλπ
∂xδ

− ∂gλδ
∂xπ

)
gδη
(
∂gνη
∂xρ

+
∂gρη
∂xν

− ∂gρν
∂xη

)
−gλη

(
∂gδη
∂xρ

+
∂gρη
∂xδ

− ∂gρδ
∂xη

)
gδπ

(
∂gνπ
∂xλ

+
∂gλπ
∂xν

− ∂gλν
∂xπ

)}
.

(1.1.21)

It should be kept in mind that the coefficients gδη of the matrix (gδη) inverse to (gµν)

take the form gδη = (det(gµν))
−1
pδη, with pδη’s being homogeneous polynomials,

of degree one less than the dimension of the manifold, in the gµν ’s.

It turns out that (1.1.18b) allows one also to construct solutions of Einstein
equations [68], this will be done in the following sections.

Before analyzing the existence question, it is natural to ask the following: given
a solution of the Einstein equations, can one always find local coordinate systems
yA satisfying the wave condition (1.1.17)? The answer is yes, the standard way of
obtaining such functions proceeds as follows: Let S be any spacelike hypersurface
in M ; by definition, the restriction of the metric g to TS is positive non-degenerate.
Let O ⊂ S be any open subset of S , and let X be any smooth vector field on M ,
defined along O, which is transverse to S ; by definition, this means that for each
p ∈ O the tangent space TpM is the direct sum of TpS and of the linear space
RX(p) spanned by X(p). (Any timelike vector X would do — e.g., the unit normal
to S — but transversality is sufficient for our purposes here.) The following result
is well known, though difficult to locate in the literature:

Theorem 1.1.1 For any smooth functions f , g on O ⊂ S there exists a unique
smooth solution φ defined on D(O) of the problem

2gφ = 0 , φ|O = f , X(φ)|O = g .

Once a hypersurface S has been chosen, local wave coordinates adapted to S
may be constructed as follows: Let O be any coordinate patch on S with coordinate
functions xi, i = 1, . . . , n, and let e0 be the field of unit future pointing normals to
O. On D(O) define the yA’s to be the unique solutions of the problem

2gy
A = 0 ,

y0|O = 0 , e0(y0)|O = 1 , (1.1.22)

yi|O = xi , e0(yi)|O = 0 , i = 1, . . . , n . (1.1.23)

We note that there is a considerable freedom in the construction of the yi’s (because
of the freedom of choice of the xi’s), but the function y0 is defined uniquely by S .
Since the xi’s form a coordinate system on O, a simple application of the implicit
function theorem shows that there exists a neighborhood U ⊂ D(O) of O which is
coordinatized by the yA’s.
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1.2 Existence local in time and space in wave coor-
dinates

Let us return to (1.1.16). Assume again that the yA’s form a local coordinate
system, but do not assume for the moment that the yA’s solve the wave equa-
tion. In that case (1.1.16) together with the definition (1.1.18a) of EAB lead
to

RAB =
1

2
(EAB − gAC∂CλB − gBC∂CλA) +

2Λ

n− 1
gAB . (1.2.1)

For the purpose of the calculations that follow, it turns out to be convenient to
treat the index A on the λ’s as a vector index, and change the partial derivatives
in (1.2.1) to vector-covariant ones:

EAB − gAC∂CλB − gBC∂CλA =

EAB + gACΓBCDλ
D + gBCΓACDλ

D︸ ︷︷ ︸
=:ÊAB

−gAC(∂Cλ
B + ΓBCDλ

D)− gBC(∂Cλ
A + ΓACDλ

D) . (1.2.2)

One can then rewrite (1.2.1) as

RAB =
1

2
(ÊAB −∇AλB −∇BλA) +

2Λ

n− 1
gAB . (1.2.3)

The idea, due to Yvonne Choquet-Bruhat [68], is to use the hyperbolic character
of the equation

ÊAB = 0 (1.2.4)

to construct a metric g. If we manage to make sure that λA vanishes as well, it
will then follow from (1.2.1) then g will also solve the Einstein equation. The
following result is again standard:

Theorem 1.2.1 For any initial data

gAB(yi, 0) ∈ Hk+1 , ∂0g
AB(yi, 0) ∈ Hk , k > n/2 , (1.2.5)

prescribed on an open subset O ⊂ {0} × Rn ⊂ R × Rn there exists a unique
solution gAB defined on an open neighborhood U ⊂ R × Rn of O of (1.2.4).
The set U can be chosen so that gAB defines a Lorentzian metric, with (U , g)
— globally hyperbolic with Cauchy surface O.

Remark 1.2.2 The results in [98–100, 152] and references therein allow one to
reduce the differentiability threshold above.

It remains to find out how to ensure the conditions (1.1.17). The key ob-
servation of Yvonne Choquet-Bruhat is that (1.2.4) and the Bianchi identities
imply a wave equation for λA’s. In order to see that, recall that it follows from
the Bianchi identities that the Ricci tensor of the metric g necessarily satisfies
a divergence identity:

∇A
(
RAB − R

2
gAB

)
= 0 .
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Assuming that (1.2.4) holds, (1.2.1) implies then

0 = −∇A
(
∇AλB +∇BλA −∇CλCgAB

)
= −

(
2λB +∇A∇BλA −∇B∇CλC

)
= −

(
2λB +RBAλ

A
)
. (1.2.6)

This shows that λA necessarily satisfies the second order hyperbolic system of
equations

2λB +RBAλ
A = 0 . (1.2.7)

Now, it is a standard fact in the theory of hyperbolic equations that we will
have

λA ≡ 0

on the domain of dependence D(O) provided that both λA and its derivatives
vanish at O.

Remark 1.2.3 Actually the vanishing of λ := (λA) as above is a completely stan-
dard result only if the metric is C1,1; this is proved by a simpler version of the
argument that we are about to present. But the result remains true under the
weaker conditions of Theorem 1.2.1, which can be seen as follows. Consider initial
data as in (1.2.5), with some k ∈ R satisfying k > n/2. Then the derivatives of the
metric are in L∞,

|∂g| ≤ C ,

for some constant C which, in the calculation below, might change from line to line.
Let St be a foliation by spacelike hypersurfaces of a conditionally compact domain
of dependence D(S0), where S0 is a subset of the initial data surface S . When λ
vanishes at S0, a standard energy calculation for (1.2.7) gives the inequality

‖λ‖2H1(St)
≤ C

∫ t

0

‖
(
(1 + |Ric|)|λ|+ (1 + |∂g|)|∂λ|

)
|∂λ|‖L1(Ss)ds

≤ C

∫ t

0

(
‖(1 + |Ric|)λ‖L2(Ss)‖∂λ‖L2(Ss) + ‖λ‖2H1(St)

)
ds

≤ C

∫ t

0

(
‖(1 + |Ric|)λ‖L2(Ss)‖λ‖H1(Ss) + ‖λ‖2H1(Ss)

)
ds . (1.2.8)

We want to use this inequality to show that λ vanishes everywhere; the idea is
to estimate the integrand by a function of ‖λ‖2H1(Ss)

, the vanishing of λ follows

then from the Gronwall lemma. Such an estimate is clear from (1.2.8) if |Ric| is
in L∞, which proves the claim for metrics in C1,1, but is not obviously apparent
for less regular metrics. Now, the construction of g in the course of the proof of
Theorem 1.2.1 provides a metric such that ∂g|Ss

∈ Hk and Ric|Ss
∈ Hk−1. By

Sobolev embedding for n > 2 we have [10]

‖λ‖Lp(Ss) ≤ C‖λ‖H1(Ss) ,

where p = 2n/(n− 2). We can thus use Hölder’s inequality to obtain

‖|Ric|λ‖L2(Ss) ≤ ‖Ric‖Ln(Ss)‖λ‖Lp(Ss) ≤ C‖Ric‖Ln(Ss)‖λ‖H1(Ss) .
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Equation (1.2.8) gives thus

‖λ‖2H1(St)
≤ C

∫ t

0

(
1 + ‖Ric‖Ln(Ss)

)
‖λ‖2H1(Ss)

ds ,

which is the desired inequality provided that ‖Ric‖Ln(Ss) is finite. But, again by
Sobolev,

‖Ric‖Lp(Ss) ≤ C‖Ric‖Hk−1(Ss) provided that
1

p
≥ 1

2
− k − 1

n
,

and we see that Ric ∈ Ln(Ss) will hold for k > n/2, as assumed in Theorem 1.2.1.

Remark 1.2.4 There exists a simple generalization of the wave coordinates con-
dition 2gx

µ = 0 to

2gy
A = λ̊A(yB , xµ, gαβ) . (1.2.9)

In lieu of solving the equation ÊAB = 0 one solves

ÊAB = ∇Aλ̊B +∇Bλ̊A . (1.2.10)

There exists a variation of Theorem 1.2.1 that applies to this equation as well.
Equation (1.2.3) can then be rewritten as

RAB =
1

2
(ÊAB −∇Aλ̊B −∇Bλ̊A︸ ︷︷ ︸

=0

)−∇A(λB − λ̊B)−∇B(λA − λ̊A) +
2Λ

n− 1
gAB .

(1.2.11)

This allows one to repeat the calculation (1.2.6), with λA there replaced by λA−λ̊A.
There remains the easy task to adapt the calculations that follow, done in the

case λ̊A = 0, to the modified condition (1.2.9), leading to initial data satisfying the
right conditions.

Remark 1.2.5 We can further generalize to include matter fields. Consider, for
example, a set of fields ψI , i = 1, . . . , N̊ , for some N̊ ∈ N, satisfying a system of
equations of the form

2gψ
I = F I(ψJ , ∂ψJ , g, ∂g) . (1.2.12)

We assume that there exists an associated energy-momentum tensor

Tµν(ψJ , ∂ψJ , g, ∂g)

which is identically divergence-free when (1.2.12) hold:

∇µTµν = 0 .

Allowing (1.2.9), instead of solving the equation ÊAB = 0 one solves

ÊAB = ∇Aλ̊B +∇Bλ̊A + 16π
G

c4

(
TAB − 1

n− 1
gCDTCDg

AB
)
. (1.2.13)

Theorem 1.2.1 applies to this equation as well. Equation (1.2.3) can then be rewrit-
ten as

RAB =
1

2

(
ÊAB −∇Aλ̊B −∇Bλ̊A − 16π

G

c4

(
TAB − 1

n− 1
gCDTCDg

AB
)

︸ ︷︷ ︸
=0

)

−∇A(λB − λ̊B)−∇B(λA − λ̊A)

+
2Λ

n− 1
gAB + 8π

G

c4

(
TAB − 1

n− 1
gCDTCDg

AB

)
. (1.2.14)
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Because TAB has identically vanishing divergence by hypothesis, one can again
repeat the calculation (1.2.6), with λA there replaced by λA − λ̊A. As before, the

right initial data will lead to a solution with λA = λ̊A, and hence to the desired
solution of the Einstein equations with sources.

We return to the vanishing of λA and its derivatives on S . It is convenient
to assume that y0 is the coordinate along the R factor of R×Rn, so that set O
carrying the initial data is a subset of {y0 = 0}; this can always be done. We
have

2yA =
1√
| det g|

∂B

(√
| det g|gBC∂CyA

)
=

1√
| det g|

∂B

(√
| det g|gBA

)
.

So 2yA will vanish at the initial data surface if and only if certain time deriva-
tives of the metric are prescribed in terms of the space ones:

∂0

(√
|det g|g0A

)
= −∂i

(√
|det g|giA

)
. (1.2.15)

This implies that the initial data (1.2.5) for the equation (1.2.4) cannot be
chosen arbitrarily if we want both (1.2.4) and the Einstein equation to be si-
multaneously satisfied.

It should be emphasized that there is considerable freedom in choosing the
wave coordinates, which is reflected in the freedom to adjust the initial values of
g0A’s. A popular choice is to require that on the initial hypersurface {y0 = 0}
we have

g00 = −1 , g0i = 0 , (1.2.16)

and this choice simplifies the algebra considerably. (We show that (1.2.16) can
always be imposed in Proposition 1.4.1 below.) Equation (1.2.15) determines
then the time derivatives ∂0g

0A|{y0=0} needed in Theorem 1.2.1, once gij |{y0=0}
and ∂0gij |{y0=0} are given. So, from this point of view, the essential initial data
for the evolution problem become the space metric

g := gijdy
idyj ,

together with its time derivatives.
It turns out that further constraints arise from the requirement of the van-

ishing of the derivatives of λ. Supposing that (1.2.15) holds on {y0 = 0} —
equivalently, supposing that λ vanishes on {y0 = 0}, we then have

∂iλ
A = 0

on {y0 = 0}, where the index i is used to denote tangential derivatives. In order
that all derivatives vanish initially it remains to ensure that some transverse
derivative does. A transverse direction is provided by the field N of unit timelike
normals to {y0 = 0} and, as we are about to show, the vanishing of ∇Nλ can
be expressed as (

Gµν + Λgµν

)
Nµ = 0 . (1.2.17)
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For this, it is most convenient to use an ON frame eµ, with e0 = N . It follows
from the equation EAB = 0 and (1.2.1) that

Gµν + Λgµν = −
(
∇µλν +∇νλµ −∇αλαgµν

)
,

which gives

−
(
Gµν + Λgµν

)
NµNν = 2∇0λ0 −∇αλα g00︸︷︷︸

=−1

= 2∇0λ0 + (−∇0λ0 +∇iλi︸︷︷︸
=0

)

= ∇0λ0 , (1.2.18)

which shows that the vanishing of ∇0λ0 is equivalent to the vanishing of the
µ = 0 component in (1.2.17). Finally

−
(
Gi0 + Λgi0

)
= ∇iλ0︸ ︷︷ ︸

=0

+∇0λi −∇αλα gi0︸︷︷︸
=0

= ∇0λi , (1.2.19)

as desired.

Equations (1.2.17) are called the general relativistic constraint equations.
We will shortly see that (1.2.15) has quite a different character from (1.2.17);
the former will be referred to as a gauge equation.

Summarizing, we have proved:

Theorem 1.2.6 Under the hypotheses of Theorem 1.2.1, suppose that the ini-
tial data (1.2.5) satisfy (1.2.15), (1.2.16) as well as the constraint equations
(1.2.17). Then the metric given by Theorem 1.2.1 on the globally hyperbolic set
U satisfies the vacuum Einstein equations.

In conclusion, in the wave gauge λA = 0 the Cauchy data for the vacuum
Einstein equations consist of

1. An open subset O of Rn,

2. together with matrix-valued functions gAB, ∂0g
AB prescribed there, so

that gAB is symmetric with signature (−,+, · · · ,+) at each point.

3. The constraint equations (1.2.17) hold, and

4. the algebraic gauge equation (1.2.15) holds.

So far we have been using the notation yA for the wave coordinates. Let us assume
that those coordinates are used, and let us revert to our standard notation, xµ, for
the local coordinates. In this notation, (1.1.20) can be rewritten as

Eαβ = 2gg
αβ − 2gγδgεφΓαγεΓ

β
δφ −

4Λ

n− 1
gαβ (1.2.20)
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(recall that we want this to be zero in vacuum). Set

ϕ :=
√
|det gαβ | , gαβ := ϕgαβ . (1.2.21)

In terms of g, the wave conditions take the particularly simple form

∂αg
αβ = 0 . (1.2.22)

It is therefore convenient to rewrite Einstein equations as a system of wave equations
for gαβ . In order to do that, we calculate as follows:

∂µϕ = ∂µ

(√
|det gαβ |

)
=

1

2

√
|det gαβ |gαβ∂µgαβ = −1

2

√
|det gαβ |gαβ∂µgαβ

= −1

2
ϕgαβ∂µg

αβ ,

2gϕ = ∇µ∂µϕ = −1

2
∇µ
(
ϕgαβ∂µg

αβ
)

= −1

2

(
∇µϕgαβ∂µgαβ︸ ︷︷ ︸

−2∂µϕ/ϕ

+ϕgµν∂νgαβ∂µg
αβ + ϕgαβ 2gg

αβ︸ ︷︷ ︸
=Eαβ+...

)

= ϕ−1∇µϕ∂µϕ−
ϕ

2

(
gµν∂νgαβ∂µg

αβ + gαβ
(
Eαβ + 2gγδgεφΓαγεΓ

β
δφ +

4Λ

n− 1
gαβ
))

,

2gg
αβ = ϕ2gg

αβ + 2∇µϕ∂µgαβ + 2gϕg
αβ .

Thus, in harmonic coordinates,

2gg
αβ = ϕ

(
Eαβ + 2gγδgεφΓαγεΓ

β
δφ +

4Λ

n− 1
gαβ
)

+ 2∇µϕ∂µgαβ

+

[
ϕ−1∇µϕ∂µϕ−

ϕ

2

(
gµν∂νgρσ∂µg

ρσ + gρσ
(
Eρσ + 2gγδgεφΓργεΓ

σ
δφ +

4Λ

n− 1
gρσ
))]

gαβ ;

(1.2.23)

also note that the Λ terms can be grouped together to −2Λgαβ .
Next, it might be convenient instead to write directly equations for gµν rather

than gµν , or gµν . For this, we use again gαβg
βγ = δγα to obtain

∂σgαβ = −gαγgβδ∂σgγδ ,

gρσ∂ρ∂σgαβ = −gρσ
(
∂ρgαγgβδ∂σg

γδ + gαγ∂ρgβδ∂σg
γδ

+gαγgβδ∂ρ∂σg
γδ
)
,

= −gρσ
(
∂ρgαγgβδ∂σg

γδ + gαγ∂ρgβδ∂σg
γδ
)

−gαγgβδ gρσ∂ρ∂σg
γδ︸ ︷︷ ︸

2ggγδ+Γλρσ∂λg
γδ

,

2ggαβ = gρσ∂ρ∂σgαβ − Γσαβ∂σgαβ .

One can use now the formula (1.2.20) expressing 2gg
γδ in terms of Eαβ to obtain

an expression for Rαβ . In particular one finds

Rαβ = −1

2
2ggαβ − gαµ∇βλµ − gβµ∇αλµ + . . . , (1.2.24)

where “. . .” stands for terms which do not involve second derivatives of the metric.
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1.3 The geometry of spacelike submanifolds

Let S be a hypersurface in a Lorentzian or Riemannian manifold (M , g), we
want to analyze the geometry of such hypersurfaces. Set

h := g|TS . (1.3.1)

More precisely,
∀ X,Y ∈ TS h(X,Y ) := g(X,Y ) .

The tensor field h is called the first fundamental form of S ; when non-degenerate,
it is also called the metric induced by g on h. If S is considered as an abstract
manifold with embedding i : S →M , then h is simply the pull-back i∗g.

A hypersurface S will be said to be spacelike at p ∈ S if h is Riemannian
at p, timelike at p if h is Lorentzian at p, and finally null or isotropic or lightlike
at p if h is degenerate at p. S will be called spacelike if it is spacelike at all
p ∈ S , etc. An example of null hypersurface is given by J̇(p) \ {p} for any
p ∈M , at least near p where J̇(p) \ {p} is differentiable.

When g is Riemannian, then h is always a Riemannian metric on S , and
then TS is in direct sum with (TS )⊥. Whatever the signature of g, in this
section we will always assume that this is the case:

TS ∩ (TS )⊥ = {0} =⇒ TM = TS ⊕ (TS )⊥ . (1.3.2)

Recall that (1.3.2) fails precisely at those points p ∈ S at which h is degener-
ate. Hence, in this section we consider hypersurfaces which are either timelike
throughout, or spacelike throughout. Depending upon the character of S we
will then have

ε := g(N,N) = ±1 , (1.3.3)

where N is the field of unit normals to S .
For p ∈ TS let P : TpM → TpM be defined as

TpM 3 X → P (X) = X − εg(X,N)N . (1.3.4)

We note the following properties of P :

• P annihilates N :

P (N) = P (N − εg(N,N)N) = P (N)− ε2P (N) = 0 .

• P is a projection operator:

P (P (X)) = P (X − εg(X,N)N)

= P (X)− εg(X,N)P (N) = P (X) .

• P restricted to N⊥ is the identity:

g(X,N) = 0 =⇒ P (X) = X .
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• P is symmetric:

g(P (X), Y ) = g(X,Y )− εg(X,N)g(Y,N) = g(X,P (Y )) .

The Weingarten map B : TS → TS is defined by the equation

TS 3 X → B(X) := P (∇XN) ∈ TS ⊂ TM . (1.3.5)

Here, and in other formulae involving differentiation, one should in principle
choose an extension of N off S ; however, (1.3.5) involves only derivatives in
directions tangent to S , so that the result will not depend upon that extension.

In fact, the projector P is not needed in (1.3.5):

P (∇XN) = ∇XN .

This follows from the calculation

0 = X(g(N,N)︸ ︷︷ ︸
0

) = 2g(∇XN,N) ,

which shows that ∇XN is orthogonal to N , hence tangent to S .
The map B is closely related to the second fundamental form K of S , also

called the extrinsic curvature tensor in the physics literature:

TS 3 X,Y → K(X,Y ) :=g(P (∇XN), Y ) (1.3.6a)

=g(B(X), Y ) . (1.3.6b)

It is often convenient to have at our disposal index formulae, for this purpose
let us consider a local ON frame {eµ} such that e0 = N along S . We then
have

gµν = diag(−1,+1, . . . ,+1)

in the case of a spacelike hypersurface in a Lorentzian manifold.
Using the properties of P listed above,

Kij := K(ei, ej) = g(P (∇eiN), ej) = g(P (P (∇eiN)), ej)

= g(P (∇eiN), P (ej)) = h(P (∇eiN), ej) = h(Bk
iek, ej)

= hkjB
k
i , (1.3.7)

Bk
i := ϕk(B(ei)) , (1.3.8)

where {ϕk} is a basis of T ∗S dual to the basis {P (ei)} of TS . Equivalently,

Bk
i = hkjKji ,

and it is usual to write the right-hand side as Kk
i.

Let us show that K is symmetric: first,

K(X,Y ) = g(∇XN,Y )

= X(g(N,Y )︸ ︷︷ ︸
=0

)− g(N,∇XY ) . (1.3.9)



16 CHAPTER 1. THE EINSTEIN EQUATIONS

Now, ∇ has no torsion, which implies

∇XY = ∇YX − [X,Y ] .

Further, the commutator of vector fields tangent to S is a vector field tangent
to S , which implies

∀ X,Y ∈ TS g(N, [X,Y ]) = 0 .

Returning to (1.3.9), it follows that

K(X,Y ) = −g(N,∇YX − [X,Y ]) = −g(N,∇YX) ,

and the equation
K(X,Y ) = K(Y,X)

immediately follows from (1.3.9).
To continue, for X,Y — sections of TS we set

DXY := P (∇XY ) . (1.3.10)

First, we claim that D is a connection: Linearity with respect to addition in all
variables, and with respect to multiplication of X by a function, is straightfor-
ward. It remains to check the Leibniz rule:

DX(αY ) = P (∇X(αY ))

= P (X(α)Y + α∇XY )

= X(α)P (Y ) + αP (∇XY )

= X(α)Y + αDXY .

It follows that all the axioms of a covariant derivative on vector fields are
fulfilled, as desired. It turns out that D is actually the Levi-Civita connection
of the metric h. Recall that the Levi-Civita connection is determined uniquely
by the requirement of vanishing torsion, and that of metric-compatibility. Both
results are straightforward:

DXY −DYX = P (∇XY −∇YX) = P ([X,Y ]) = [X,Y ] ;

in the last step we have again used the fact that the commutator of two vector
fields tangent to S is a vector field tangent to S . In order to establish metric-
compatibility, we calculate for all vector fields X,Y, Z tangent to S :

X(h(Y,Z)) = X(g(Y, Z))

= g(∇XY,Z) + g(Y,∇XZ)

= g(∇XY, P (Z)︸ ︷︷ ︸
=Z

) + g(P (Y )︸ ︷︷ ︸
=Y

,∇XZ)

= g(P (∇XY ), Z) + g(Y, P (∇XZ))︸ ︷︷ ︸
P is symmetric

= g(DXY,Z) + g(Y,DXZ)

= h(DXY,Z) + h(Y,DXZ) .
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Equation (1.3.10) turns out to be very convenient when trying to express the
curvature of h in terms of that of g. To distinguish between both curvatures let
us use the symbol ρ for the curvature tensor of h; by definition, for all vector
fields tangential to S ,

ρ(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z

= P
(
∇X(P (∇Y Z))−∇Y (P (∇XZ))−∇[X,Y ]Z

)
.

Now, for any vector field W (Not necessarily tangent to S ) we have

P
(
∇X(P (W ))

)
= P

(
∇X(W − εg(N,W )N)

)
= P

(
∇XW − εX(g(N,W ))n︸ ︷︷ ︸

P (N)=0

−εg(N,W )∇Xn
)

= P
(
∇XW

)
− εg(N,W )P

(
∇Xn

)
= P

(
∇XW

)
− εg(N,W )B(X) .

Applying this equation to W = ∇Y Z we obtain

P
(
∇X(P (∇Y Z))

)
= P (∇X∇Y Z)− εg(N,∇Y Z)B(X)

= P (∇X∇Y Z) + εK(Y,Z)B(X) ,

and in the last step we have used (1.3.9). It now immediately follows that

ρ(X,Y )Z = P (R(X,Y )Z) + ε
(
K(Y, Z)B(X)−K(X,Z)B(Y )

)
. (1.3.11)

In an adapted ON frame as discussed above this reads

ρijk` = Rijk` + ε(Ki
kKj` −Ki

`Kjk) . (1.3.12)

Here Ki
k is the tensor field Kij with an index raised using the contravariant

form h# of the metric h, compare (1.3.7).
We are ready now to derive the general relativistic scalar constraint equation:

Let ρij denote the Ricci tensor of the metric h, we then have

ρj` := ρiji`

= Riji`︸︷︷︸
=Rµjµ`−R0

j0`

+ε(Ki
iKj` −Ki

`Kji)

= Rj` −R0
j0` + ε(trhKKj` −Ki

`Kji) .

Defining R(h) to be the scalar curvature of h, it follows that

R(h) = ρjj

= Rjj︸︷︷︸
=Rµµ−R0

0

− R0j
0j︸ ︷︷ ︸

=R0µ
0µ

+ε(trhKK
j
j −KijKji)

= R(g)− 2 R0
0︸︷︷︸

=εR00

+ε
(

(trhK)2 − |K|2h
)

= −16πεT00 + 2Λ + ε
(

(trhK)2 − |K|2h
)
,
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and we have used the Einstein equation,

Rµν −
1

2
Rgµν + Λgµν = 8π

G

c4
Tµν , (1.3.13)

with G = c = 1. Assuming that ε = −1 we obtain the desired scalar constraint:

R(h) = 16πTµνN
µNν + 2Λ + |K|2h − (trhK)2 . (1.3.14)

(We emphasise that this equation is valid whatever the dimension of S .) In
particular in vacuum, with Λ = 0, one obtains

R(h) = |K|2h − (trhK)2 . (1.3.15)

The vector constraint equation carries the remaining information contained
in the equation GµνN

µ = 0. In order to understand that equation let Y be
tangent to S , we then have

GµνN
µY ν =

(
Rµν −

1

2
R(g)gµν

)
NµY ν

= Ric(N,Y )− 1

2
R(g)g(N,Y )

= Ric(N,Y ) . (1.3.16)

We will relate this to some derivatives of K. By definition we have

(DZK)(X,Y ) = Z(K(X,Y ))−K(DZX,Y )−K(X,DZY ) .

Now,

Z(K(X,Y )) = Z(g(∇XN,Y )) = g(∇Z∇XN,Y ) + g(∇XN,∇ZY ) .

Since ∇XN is tangential, and P is symmetric, the last term can be rewritten
as

g(∇XN,∇ZY ) = g(P (∇XN),∇ZY ) = g(∇XN,P (∇ZY ))

= K(X,P (∇ZY )) = K(X,DZY ) .

It follows that

(DZK)(X,Y )− (DXK)(Z, Y )

= g(∇Z∇XN,Y )− g(∇X∇Zn, Y ) +K(X,DZY )−K(Z,DXY )

−K(DZX,Y )−K(X,DZY ) +K(DXZ, Y ) +K(Z,DXY )

= g(R(Z,X)N,Y ) + g(∇[Z,X]n, Y )︸ ︷︷ ︸
K([Z,X],Y )

−K(DZX −DXZ︸ ︷︷ ︸
[Z,X]

, Y )

= g(R(Z,X)N,Y ) .

Thus,

(DZK)(X,Y )− (DXK)(Z, Y ) = g(R(Z,X)N,Y ) . (1.3.17)
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In a frame in which the ei’s are tangent to the hypersurface S , this can be
rewritten as

DkKij −DiKkj = RjµkiN
µ . (1.3.18)

A contraction over i and j gives then

hij(DkKij −DiKkj) = hijRj0ki + εR00k0︸ ︷︷ ︸
0

= gµνRµ0kν = −Rk0 .

Using the Einstein equation (1.3.13) together with (1.3.16) we obtain the vector
constraint equation:

DjK
j
k −DkK

j
j = 8πTµνN

µhνk . (1.3.19)

1.4 Cauchy data

Let us return to the discussion of the end of Section 1.1. We shall adopt a
slightly general point of view than that presented there, where we assumed
that the initial data were given on an open subset O of the zero-level set of the
function y0. A correct geometric picture here is to start with an n-dimensional
hypersurface S , and prescribe initial data there; the case where S is O is thus
a special case of this construction. At this stage there are two attitudes one
may wish to adopt: the first is that S is a subset of the space-time M — this
is essentially what we assumed in Section 1.3. Another way of looking at this
is to consider S as a hypersurface of its own, equipped with an embedding

i : S →M .

The most convenient approach is to go back and forth between those points of
view, and this is the strategy that we will follow.

As made clear by the results in Section 1.3, the metric h is uniquely de-
fined by the space-time metric g once that S ⊂ M (or i(S ) ⊂ M ) has been
prescribed; the same applies to the extrinsic curvature tensor K. A vacuum
initial data set (S , h,K) is a triple where S is an n–dimensional manifold,
h is a Riemannian metric on S , and K is a symmetric two-covariant tensor
field on S . Further (h,K) are supposed to satisfy the vacuum constraint equa-
tions (1.3.15) and (1.3.19), perhaps (but not necessarily so) with a non-zero
cosmological constant Λ.

Let us show that specifyingK is equivalent to prescribing the time-derivatives
of the space-part gij of the resulting space-time metric g. Suppose, indeed, that
a space-time (M, g) has been constructed (not necessarily vacuum) such that
K is the extrinsic curvature tensor of S in (M , g). Consider any domain of
coordinates O ⊂ S and construct coordinates yµ in some M –neighborhood
of U such that S ∩ U = O; those coordinates could be wave-coordinates,
as described at the end of Section 1.1, but this is not necessary at this stage.
Since y0 is constant on S the one-form dy0 annihilates TS , so does the one
form g(N, ·), and since S has codimension one it follows that dy0 must be
proportional to g(N, ·):

NAdy
A = N0dy

0
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on O. The normalization −1 = g(n, n) = gµνnµnν = g00(n0)2 gives

nαdy
α =

1√
|g00|

dy0 .

Next,

Kij := g(∇iN, ∂j) = ∇iNj

= ∂iNj − ΓµjiNµ

= −Γ0
jiN0

= −1

2
g0σ
(
∂jgσi + ∂igσj − ∂σgij

)
N0 . (1.4.1)

This shows that the knowledge of gµν and ∂0gij at y0 = 0 allows one to calculate
Kij . Reciprocally, (1.4.1) can be rewritten as

∂0gij =
2

g00N0
Kij+ terms determined by the gµν ’s and their space–derivatives ,

so that the knowledge of the gµν ’s and of the Kij ’s at y0 = 0 allows one to
calculate ∂0gij . Thus, Kij is the geometric counterpart of the ∂0gij ’s.

It is sometimes said that the g0A’s have a gauge character. By this it is usually
meant that the objects under consideration do not have any intrinsic meaning, and
their values can be changed using the action of some family of transformations,
relevant to the problem at hand, without changing the geometric, or physical, in-
formation carried by those objects. In our case the relevant transformations are the
coordinate ones, and things are made precise by the following proposition:

Proposition 1.4.1 Let gAB, g̃AB be two metrics such that

gij |{y0=0} = g̃ij |{y0=0} , Kij |{y0=0} = K̃ij |{y0=0} . (1.4.2)

Then there exists a coordinate transformation φ defined in a neighborhood of {y0 =
0} which preserves (1.4.2) such that

g0A|{y0=0} = (φ∗g̃)0A|{y0=0} . (1.4.3)

Furthermore, for any metric g there exist local coordinate systems {ȳµ} such that
{y0 = 0} = {ȳ0 = 0} and, if we write g = ḡABdȳ

AdȳB etc. in the barred coordinate
system, then

gij |{y0=0} = ḡij |{ȳ0=0} , Kij |{y0=0} = K̄ij |{ȳ0=0} ,

ḡ00|{y0=0} = −1 , ḡ0i|{y0=0} = 0 . (1.4.4)

Remark 1.4.2 We can actually always achieve ḡ00 = −1, ḡ0i = 0 in a whole neigh-
borhood of S : this is done by shooting geodesics normally to S , choosing y0 to
be the affine parameter along those geodesics, and by transporting the coordinates
yi from S by requiring them to be constant along the normal geodesics. The co-
ordinate system will break down wherever the normal geodesics start intersecting,
but the implicit function theorem guarantees that there will exist a neighborhood
of S on which this does not happen. The resulting coordinates are called Gauss
coordinates. While those coordinates are geometrically natural, in this coordinate
system the Einstein equations do not appear to have good properties from the PDE
point of view.
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Proof: It suffices to prove the second claim: for if φ̄ is the transformation that
brings g to the form (1.4.4), and φ̃ is the corresponding transformation for g̃, then
φ := φ̃ ◦ φ̄−1 will satisfy (1.4.3).

Let us start by calculating the change of the metric coefficients under a trans-
formation of the form

y0 = ϕȳ0 , yi = ȳi + ψiȳ0 . (1.4.5)

If ϕ > 0 then clearly
{y0 = 0} = {ȳ0 = 0} .

Further, one has

g
∣∣∣
{y0=0}

=
(
g00(dy0)2 + 2g0idy

0dyi + gijdy
idyj

)∣∣∣
{y0=0}

=
(
g00(ȳ0dϕ+ ϕdȳ0)2 + 2g0i(ȳ

0dϕ+ ϕdȳ0)(dȳi + ȳ0dψi + ψidȳ0)

+gij(dȳ
i + ȳ0dψi + ψidȳ0)(dȳj + ȳ0dψj + ψjdȳ0)

)∣∣∣
{y0=0}

=
(
g00(ϕdȳ0)2 + 2g0iϕdȳ

0(dȳi + ψidȳ0)

+gij(dȳ
i + ψidȳ0)(dȳj + ψjdȳ0)

)∣∣∣
{y0=0}

=
(

(g00ϕ
2 + 2g0iψ

i + gijψ
iψj)(dȳ0)2

+2(g0iϕ+ gijψ
j)dȳ0dȳi + gijdȳ

idȳj
)∣∣∣
{y0=0}

=: ḡµνdȳ
µdȳν .

We shall apply the above transformation twice: first we choose ϕ = 1 and

ψi = hijg0j ,

where hij is the matrix inverse to gij ; this leads to a metric with ḡ0i = 0. We then
apply a second transformation of the form (1.4.5) to the new metric, now with the
new ψi = 0, and with a ϕ chosen so that the final g00 equals minus one. 2

1.5 Solutions global in space

In order to globalize the existence Theorem 1.2.1 in space, the key point is
to show that two solutions differing only by the values g0α|{y0=0} are (locally)
isometric: so suppose that g and g̃ both solve the vacuum Einstein equations
in a globally hyperbolic region U , with the same Cauchy data (g,K) on O :=
U ∩ S . One can then introduce wave coordinates in a globally hyperbolic
neighborhood of O both for g and g̃, satisfying (1.2.16), by solving

2gy
µ = 0 , 2g̃ỹ

µ = 0 , (1.5.1)

with the same initial data for yµ and ỹµ. Transforming both metrics to their
respective wave-coordinates, one obtains two solutions of the reduced equation
(1.1.20) with the same initial data.

The question then arises whether the resulting metrics will be sufficiently
differentiable to apply the uniqueness part of Theorem 1.2.1. Now, the metrics
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obtained so far are in a space C1([0, T ], Hs), where the Sobolev space Hs in-
volves the space-derivatives of the metric. The initial data for the solutions yµ

or ỹµ of (1.5.1) may be chosen to be in Hs+1 ×Hs. However, a rough inspec-
tion of (1.5.1) shows that the resulting solutions will be only in C1([0, T ], Hs),
because of the low regularity of the metric. But then (1.1.8) implies that the
transformed metrics will be in C1([0, T ], Hs−1), and uniqueness can only be
invoked provided that s − 1 > n/2 + 1, which is one degree of differentiabil-
ity more than what was required for existence. This was the state of affairs
for some fifty-five years until the following simple argument of Planchon and
Rodnianski [137]: To make it clear that the functions yµ are considered to be
scalars in (1.5.1), we shall write y for yµ. Commuting derivatives with 2g one
finds, for metrics satisfying the vacuum Einstein equations,

2g∇αy = ∇µ∇µ∇αy = [∇µ∇µ,∇α]y = Rσµαµ︸ ︷︷ ︸
=Rσα=0

∇σy = 0 .

Commuting once more one obtains an evolution equation for the field ψαβ :=
∇α∇βy:

2gψαβ +∇σRβλασ︸ ︷︷ ︸
=0

∇λy + 2Rβ
λ
α
σψσλ = 0 ,

where the underbraced term vanishes, for vacuum metrics, by a contracted
Bianchi identity. So the most offending term in this equation for ψαβ, involving
three derivatives of the metric, disappears when the metric is vacuum. Stan-
dard theory of hyperbolic PDEs shows now that the functions ∇α∇βy are in
C1([0, T ], Hs−1), hence y ∈ C1([0, T ], Hs+1), and the transformed metrics are
regular enough to invoke uniqueness without having to increase s.

Suppose, now, that an initial data set (S , g,K) as in Theorem 1.2.1 is given.
Covering S by coordinate neighborhoods Op, p ∈ S , one can use Theorem 1.2.1
to construct globally hyperbolic developments (Up, gp) of (Up, g,K). By the
argument just given the metrics so obtained will coincide, after performing
a suitable coordinate transformation, wherever simultaneously defined. This
allows one to patch the (Up, gp)’s together to a globally hyperbolic Lorentzian
manifold, with Cauchy surface S . Thus:

Theorem 1.5.1 Any vacuum initial data set (S , g,K) of differentiability class
Hs+1 ×Hs, s > n/2, admits a globally hyperbolic development.

The solutions are locally unique, in a sense made clear by the proof.
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1.6 The Cauchy problem for the Einstein-Maxwell
equations

The Einstein-Maxwell equations form a system of equations for the gravitational
field and the Maxwell potential A = Aµdx

µ. The electric and magnetic fields
are encoded in an anti-symmetric tensor field

F = dA ⇐⇒ Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ .

(In the last equality above we have used the fact that the Levi-Civita connection
∇ has no torsion.) The Maxwell field F is required to satisfy the sourceless
Maxwell equations

∇µFµν = 0 . (1.6.1)

There is no natural space-time decomposition of F into electric and magnetic parts.
However, in space-time dimension four, given a (timelike) vector field Tµ normal to
a family of space-like hypersurfaces St one sets

Eµdx
µ = FαβT

βdxα , Bµdx
µ =

1

2
εαβγδT

αF γδdxβ . (1.6.2)

By anti-symmetry we have

EµT
µ = BµT

µ = 0 ,

which shows that the pull-backs to the St’s of E and B contains the whole infor-
mation about E and B. Furthermore one easily checks that

Fµν = 2T[µEν] + εµνρσT
ρBσ ,

which shows that E and B contain the whole information about F .
The reader can check that (1.6.1) together with dF = 0 leads to evolution

equations for the electric field E and the magnetic field B which closely resemble the
Maxwell equations. Furthermore, those equations reduce to the standard Maxwell
evolution equations when the space-time metric g is flat and Tµ∂µ equals ∂t.

The gravitational field is coupled to F via the Einstein equations,

Gµν + Λgµν = 8πTµν , (1.6.3)

using the following energy-momentum tensor:

Tµν =
1

4π

(
FµαFν

α − 1

4
FαβFαβgµν

)
. (1.6.4)

An interesting feature of the Einstein-Maxwell equations (1.6.1) and (1.6.4)
is the existence of gauge freedom, by which one means the following: Let (g,A)
be a solution of the equations, let λ be an arbitrary smooth function on space-
time, and consider a new electromagnetic potential Â defined as

Â = A+ dλ ⇐⇒ Âµ = Aµ + ∂µλ . (1.6.5)

This does not change F , since ddλ = 0, so that (1.6.1) and (1.6.3) still hold. The
transformation (1.6.5) is called a gauge transformation. The physical interpre-
tation is that the precise values of the potential A are irrelevant, the important
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field being F , so that the existence of gauge transformations does not affect
the physical properties of a given solution. On the other hand it is sometimes
convenient to have the electromagnetic potential field at disposal. One can
supplement the above equations by various gauge conditions which eliminate,
or reduce, the gauge freedom. One such condition which is convenient for our
further purposes is the Lorenz gauge1,

∇µAµ = 0 . (1.6.6)

Solutions of the Einstein-Maxwell equations can be constructed by solving a
Cauchy problem, as follows: The Cauchy data consist of a gravitational initial
data set

(S , g,K)

together with a set of fields

(A0, Ai, ∂tAi)

on S . One seeks solutions in wave coordinates for the metric and in the Lorenz
gauge for the electromagnetic potential. The evolution equation for Aµ is taken
to be

2Aµ = Rµ
νAν . (1.6.7)

(This equation will be justified by the calculations in (1.6.12) below.)

In spite of apparences, the above equation does not contain second derivatives of
the metric, at least in wave coordinates: the second derivatives of the metric that
appear in the left-hand side through the derivatives of the Christoffel symbols cancel
out exactly the ones at the right-hand side. This can be seen as follows: (1.6.7) is
equivalent to ∇µFµν = 0, which can also be rewritten as

0 = ∂µ

[√
|det g|gνβgµα(∂αAβ − ∂βAα)

]
(1.6.8)

= gνβ∂µ(
√
|det g|gµα∂αAβ)− gνβ∂µ(

√
|det g|gµα∂βAα)

+(∂µg
νβ)
[√
|det g|gµα(∂αAβ − ∂βAα)

]
= gνβ

√
|det g|2gAβ + gνβ∂µ(

√
|det g|gµα)∂αAβ − gνβ∂µ(

√
|det g|gµα)∂βAα︸ ︷︷ ︸

=0 in wave coordinates

−gνβgµα
√
|det g|∂µ∂βAα︸ ︷︷ ︸
(I)

+(∂µg
νβ)
[√
|det g|gµα(∂αAβ − ∂βAα)

]
,

where 2g is the wave operator acting on scalars, in wave coordinates 2g = gαβ∂α∂β .
In Lorenz gauge we have

0 = ∂β∂µ(
√
|det g|gµαAα) = ∂β

(
∂µ(
√
|det g|gµα)Aα︸ ︷︷ ︸

=0 in wave coordinates

+
√
|det g|gµα∂µAα

)

=
√
|det g|gµα∂β∂µAα + ∂β

(√
|det g|gµα

)
∂µAα ,

1This is not a spelling error, Ludvig Lorenz who introduced the gauge, should not be
confused with Hendrik Lorentz who introduced the transformations bearing his name, and
who shared the 1902 Nobel prize for his explanation of the Zeeman effect.
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leading to

(I) = gνβ∂β

(√
|det g|gµα

)
∂µAα (1.6.9)

= gνβ
(

1

2

√
|det g|gλτ (∂βgλτ )gµα +

√
|det g|∂βgµα

)
∂µAα .

Finally

0 = gνβ2gAβ +
1

2
gνβgλτ∂βgλτg

µα∂µAα + gνβ(∂βg
µα)∂µAα

+gµα(∂µg
νβ)(∂αAβ − ∂βAα) , (1.6.10)

and we see that there are no second derivatives of the metric in this equation, as
desired.

The initial data needed for (1.6.7) can be chosen to be Aµ and ∂tAµ on S ;
the missing field ∂tA0 is calculated from the remaining ones using (1.6.6).

Given a solution of the harmonically reduced Einstein equation and of
(1.6.7), we need to show that Aµ satisfies the Lorenz gauge condition (1.6.6),
and that the Maxwell equations (1.6.1) hold. In order to do that, set

ψ := ∇µAµ , (1.6.11)

and we wish to show that ψ ≡ 0. Now,

∇µFµν = 2Aµ −RµνAν −∇µψ
= −∇µψ (1.6.12)

in view of (1.6.7). This shows that ∂tψ will vanish on S if and only if we
impose the Maxwell constraint equation

∇µFµ0 = 0 . (1.6.13)

Assuming that this equation holds, we calculate

0 = ∇µ∇νFµν = −2ψ .

Here we have used the fact that the left-hand-side of the last equation vanishes
identically. It follows that ψ satisfies the homogeneous wave equation

2ψ = 0 .

By choice of ∂tA0 we have ψ = 0 on S , while ∂tψ = 0 on S by the Maxwell
constraint equation, hence ψ ≡ 0 in any globally hyperbolic development of S .
Subsequently

∇µFµν = 0

by (1.6.12). We have thus proved that the field Aµ so obtained satisfies the
Maxwell equation, and is in the Lorenz gauge.
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1.7 Constraint equations: the conformal method

A set (M, g,K), where (M, g) is a Riemannian manifold, and K is a symmet-
ric tensor field on M , will be called a vacuum initial data set if the vacuum
constraint equations (1.3.14), (1.3.19) hold:

DjK
j
k = DkK

j
j , (1.7.1a)

R(g) = 2Λ + |K|2g − (trgK)2 . (1.7.1b)

Here, as before, Λ is a constant. The object of this section is to present the
conformal method for constructing solutions of (1.7.1). This method works best
when trgK is constant over M :

∂i(trgK) = 0 . (1.7.2)

(We shall see shortly that (1.7.2) leads to a decoupling of the equations (1.7.1),
in a sense which will be made precise.) Hypersurfaces M in a space-times M
satisfying (1.7.2) are known as constant mean curvature (CMC) surfaces. Equa-
tion (1.7.2) is sometimes viewed as a “gauge condition”, in the following sense:
if we require (1.7.2) to hold on all hypersurfaces Mτ within a family of hyper-
surfaces in the space-time, then this condition restricts the freedom of choice of
the associated time function t which labels those hypersurfaces. Unfortunately
there exist space-times in which no CMC hypersurfaces exist [15, 92]. Now,
the conformal method is the only method known which produces all solutions
satisfying a reasonably mild “gauge condition”, it is therefore unfortunate that
condition (1.7.2) is a restrictive one.

The conformal method seems to go back to Lichnerowicz [108], except that Lich-
nerowicz proposes a different treatment of the vector constraint there. The as-
sociated analytical aspects have been implemented in various contexts: asymp-
totically flat [45], asymptotically hyperbolic [4–6], or spatially compact [87]; see
also [20, 43, 88, 157]. There exist a few other methods for constructing solutions
of the constraint equations which do not require constant mean curvature: the
“thin sandwich approach” of Baierlain, Sharp and Wheeler [?], further studied
in [?, 19]; the gluing approach of Corvino and Schoen [49, 56, 144]; the conformal
gluing technique of Joyce [97], as extended by Isenberg, Mazzeo and Pollack [90, 92];
the quasi-spherical construction of Bartnik [17, 148] and its extension due to Smith
and Weinstein [151]. One can also use the implicit function theorem, or varia-
tions thereof [42, 93, 96], to construct solutions of the constraint equations for which
(1.7.2) does not necessarily hold. In [20] the reader will find a presentation of alter-
native approaches to constructing solutions of the constraints, covering work done
up to 2003.

1.7.1 The Yamabe problem

At the heart of the conformal method lies the Yamabe problem. From the
general relativistic point of view, this correspond to special initial data where
K vanishes; such initial data are called time symmetric. For such data (1.7.1b)
becomes

R(g) = 2Λ . (1.7.3)
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In other words, g is a metric of constant scalar curvature.
There is a classical method, usually attributed to Yamabe [156], which al-

lows one to construct metrics satisfying (1.7.3) by conformal deformation: given
a metric g̃ one sets

g = φ
4

n−2 g̃ ,

then (1.7.3) becomes

∆g̃φ−
n− 2

4(n− 1)
R̃φ = − n− 2

2(n− 1)
Λφ

n+2
n−2 . (1.7.4)

One thus obtains a metric of constant scalar curvature 2Λ when a strictly
positive solution φ can be found.

Equation 1.7.4 is known as the Yamabe equation, and the problem of finding
positive solutions of this equation on compact manifolds is known as the Yamabe
problem. The final solution, that such deformations always exist when Λ is
suitably restricted (we will return to this issue shortly), has been given by
Schoen [145]. Previous key contributions include [8, 153], and a comprehensive
review of the problem can be found in [106]. A completely different solution
has been devised by Bahri [11].

The idea is then to do something similar in general relativity, exploiting the
fact that the Yamabe problem has already been solved. For this we need, first,
to understand the behaviour of the vector constraint equation under conformal
transformations.

Regardless of whether the manifold is compact or not, the Yamabe number of a
metric is defined by the equation

Y (M, g) = inf
u∈C∞b , u 6≡0

∫
M

(|Du|2 + n−2
4(n−1)Ru

2)( ∫
M
u2n/(n−2)

)(n−2)/n
. (1.7.5)

where C∞b denotes the space of compactly supported smooth functions. The number
Y (M, g) depends only upon the conformal class of g. If Y (M, g) > 0 we say that g
is in the positive Yamabe class, etc. When M is compact, one can show that there
exists a conformal rescaling so that R̃ is positive [?] if and only g is in the positive
Yamabe class, similarly for the zero and negative Yamabe class cases.

1.7.2 The vector constraint equation

As is made clear by the name, the conformal method exploits the properties of
(1.7.1) under conformal transformations: consider a metric g̃ related to g by a
conformal rescaling:

g̃ij = φ`gij ⇐⇒ g̃ij = φ−`gij . (1.7.6)

This implies

Γ̃ijk =
1

2
g̃im(∂j g̃km + ∂kg̃jm − ∂mg̃jk)

=
1

2
φ−`gim(∂j(φ

`g̃km) + ∂k(φ
`g̃jm)− ∂m(φ`gjk))

= Γijk +
`

2φ
(δik∂jφ+ δij∂kφ− gjkDiφ) , (1.7.7)
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where, as before, D denotes the covariant derivative of g.
We start by analysing what happens with (1.7.1a). Let D̃ denote the covari-

ant derivative operator of the metric g̃, and consider any trace-free symmetric
tensor field L̃ij , we have

D̃iL̃
ij = ∂iL̃

ij + Γ̃iikL̃
kj + Γ̃j ikL̃

ik

= DiL̃
ij + (Γ̃iik − Γiik)L̃

kj + (Γ̃j ik − Γj ik)L̃
ik .

Now, from (1.7.7) we obtain

Γ̃iik = Γiik +
`

2φ
(δik∂iφ+ δii∂kφ− gikDiφ)

= Γiik +
n`

2φ
∂kφ , (1.7.8)

and we are assuming that we are in dimension n. As L̃ is traceless we obtain

D̃iL̃
ij = DiL̃

ij +
n`

2φ
∂kφL̃

kj +
`

2φ
(δjk∂iφ+ δji ∂kφ− gikD

jφ)L̃ik︸ ︷︷ ︸
∼gikL̃ik=0

= DiL̃
ij +

(n+ 2)`

2φ
∂kφL̃

kj

= φ−(n+2)`/2Di(φ
(n+2)`/2L̃ij) . (1.7.9)

It follows that

D̃iL̃
ij = 0 ⇐⇒ Di(φ

(n+2)`/2L̃ij) = 0 . (1.7.10)

This observation leads to the following: suppose that the CMC condition (1.7.2)
holds, set

Lij := Kij − trgK

n
gij . (1.7.11)

Then Lij is symmetric and trace-free whenever Kij satisfies the vector con-
straint equation (1.7.1a). Reciprocally, let τ be any constant, and let L̃ij be
symmetric, trace-free, and g̃–divergence free: by definition, this means that

D̃iL̃
ij = 0 .

Set

Lij := φ(n+2)`/2L̃ij (1.7.12a)

Kij := Lij +
τ

n
gij , (1.7.12b)

then Kij satisfies (1.7.1a).
More generally, assuming neither vacuum nor d(trgK) = 0, with the rescal-

ing g̃ij = φ`gij and with the definitions (1.7.12) we will have

8πJ i := Di(K
ij − trgKg

ij)

= Di(φ
(n+2)`/2L̃ij)− n− 1

n
Djτ

= φ(n+2)`/2D̃iL̃
ij − n− 1

n
φ`D̃jτ . (1.7.13)
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With the choice ` = − 4
n−2 which will be motivated shortly, this can also be

written as the following equation for L̃ when τ and J i have been given:

D̃iL̃
ij = 8πφ

2(n+2)
n−2 J i +

n− 1

n
φ

2n
n−2 D̃jτ . (1.7.14)

1.7.3 The scalar constraint equation

To analyse the scalar constraint equation (1.7.1b) we shall use the following for-
mula, derived in Appendix B: if gij = φ`g̃ij , then (B.1.14) with g interchanged
with g̃ and ` changed to −` gives

R(g)φ−` = R̃+
(n− 1)`

φ
∆g̃φ+

(n− 1)`{(n− 2)`+ 4}
4φ2

|dφ|2g̃ , (1.7.15)

where R̃ is the scalar curvature of g̃. Clearly it is convenient to choose

` = − 4

n− 2
, (1.7.16)

as then the last term in (1.7.7) drops out. In order to continue we use (1.7.12)
to calculate

|K|2g − (trgK)2 = gikgjlK
ijKkl − τ2

= gikgjl(L
ij +

τ

n
gij)(Lkl +

τ

n
gkl)− τ2

= gik︸︷︷︸
=φ−`gik

gjl Lij︸︷︷︸
=φ(n/2+1)`L̃ij

Lkl − τ2(1− 1

n
)

= φn`g̃ikg̃jlL̃
ijL̃kl − τ2(1− 1

n
) ,

giving thus

|K|2g − (trgK)2 = φn`|L̃|2g̃ −
n− 1

n
τ2 . (1.7.17)

Equations (1.7.1b), (1.7.7) and (1.7.17) with ` given by (1.7.16) finally yield

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ̃2φ(2−3n)/(n−2) + βφ

n+2
n−2 , (1.7.18)

where

σ̃2 :=
n− 2

4(n− 1)
|L̃|2g̃ , β :=

[
n− 2

4n
τ2 − n− 2

2(n− 1)
Λ

]
. (1.7.19)

In dimension n = 3 this equation is known as the Lichnerowicz equation:

∆g̃φ− R̃
8 φ = −σ̃2φ−7 + βφ5 . (1.7.20)

We note that σ̃2 is positive, as the notation suggests, while β is a constant,
non-negative if Λ = 0, or in fact if Λ ≤ 0.
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The strategy is now the following: let g̃ be a given Riemannian metric on
M , and let L̃ij be any symmetric transverse g̃-divergence free tensor field. We
then solve (if possible) (1.7.18) for φ, and obtain a vacuum initial data set by
calculating g using (1.7.6), and by calculating K using (1.7.12).

More generally, the energy density of matter fields is related to the geometry
through the formula

16πµ := R(g)− |K|2g + (trgK)2 − 2Λ . (1.7.21)

If µ has been prescribed, this becomes an equation for φ

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ̃2φ

2−3n
n−2 + βφ

n+2
n−2

−4(n− 2)

(n− 1)
φ
n+2
n−2πµ . (1.7.22)

1.7.4 The vector constraint equation on compact manifolds

In order to solve the Lichnerowicz equations we need the transverse-traceless
tensor (TT -tensor) field L̃, and so to obtain an exhaustive construction of CMC
initial data sets we have to give a prescription for constructing such tensors. It is
a non-trivial fact [28] that the space of TT -tensors is always infinite dimensional
in dimension larger than two.

We note that an ad-hoc example of TT -tensor on three-dimensional non-
conformally flat manifolds is provided by the Bach tensor, see Appendix B.4.
Another one is provided by the Ricci tensor on manifolds with constant scalar
curvature.

A systematic prescription how to construct TT -tensors has been given by
York: here one starts with an arbitrary symmetric traceless tensor field B̃ij ,
which will be referred to as the seed field. One then writes

L̃ij = B̃ij + C̃(Y )ij , (1.7.23)

where C̃(Y ) is the conformal Killing operator :

C̃(Y )ij := D̃iY j + D̃jY i − 2

n
D̃kY

kg̃ij . (1.7.24)

The requirement that L̃ij be divergence free becomes then an equation for the
vector field Y :

D̃iL̃
ij = 0 ⇐⇒ L̃(Y )j := D̃i(D̃

iY j + D̃jY i − 2

n
D̃kY

kg̃ij) = −D̃iB̃
ij .

(1.7.25)

While (1.7.25) looks complicated at first sight, it is rather natural: we want to
produce transverse traceless tensors by solving an elliptic differential equation. Since
the condition of being divergence-free is already a first order equation, and it is not
elliptic, then the lowest possible order of such an equation will be two. Now, the
divergence operation turns two-contravariant tensor fields to vector fields, so the
most straightforward way of ensuring ellipticity is to seek an equation for a vector
field. The simplest object that we obtain by differentiating a vector field is the tensor
field D̃iY j ; in order to achieve the desired symmetries we need to symmetrise and
remove the trace, which leads to the conformal Killing operator (1.7.24).
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The operator L defined in (1.7.25) is known as the conformal vector Lapla-
cian. Equation (1.7.25) is a second order linear partial differential equation
for Y , the solvability of which can be easily analysed. In this section we shall
consider spatially compact manifolds M . We will give an existence proof for
(1.7.25):

Theorem 1.7.1 For any smooth symmetric traceless tensor field B̃ij there ex-
ists a smooth vector field Y such that (1.7.25) holds.

Proof: Recall that a conformal Killing vector for the metric g̃ is a nontrivial
solutions of the equation C̃(Y ) = 0. When (M, g̃) does not admit any conformal
Killing vectors, Theorem 1.7.1 follows immediately from Theorem 1.7.6 below
together with (1.7.35) and (1.7.37), because then the equation

L̃(Y ) = Z

has a solution for any Z.

When conformal Killing vectors exist, the image of L̃ is the L2-orthogonal of
the kernel of L̃†. Since L̃ is formally self-adjoint, the image of L̃ is orthogonal
to the space of conformal Killing vectors. But the right-hand side of (1.7.25)
is orthogonal to that last space: indeed, if Z is a conformal Killing vector and
B̃ij is a symmetric traceless tensor field, then integration by parts gives∫
M
ZiD̃jB̃

ij = −
∫
M
D̃jZiB̃

ij

= −1

2

∫
M

(D̃jZi + D̃iZj)B̃
ij (B̃ is symmetric)

= −1

2

∫
M

(D̃jZi + D̃iZj −
1

2
D̃kZ

kg̃ij︸ ︷︷ ︸
0

)B̃ij (B̃ is trace-free)

= 0 . (1.7.26)

This shows that −D̃jB̃
ij lies in the image of L̃, and so there exist many solutions

of (1.7.25). (Note that the non-uniqueness does not change L̃ij , as defined in
(1.7.23).) 2

A property essentially equivalent to Theorem 1.7.1 is the existence of the
York splitting, also known in the mathematical literature as the Berger-Ebin
splitting :

Theorem 1.7.2 On any compact Riemannian manifold (M, g) the space of
symmetric tensors, say ΓS2M , splits L2-orthogonally as

ΓS2M = C∞g ⊕ TT ⊕ ImC ,

where C∞g are tensors proportional to the metric, TT denotes the space of
transverse traceless tensors, and ImC is the image of the conformal Killing
operator defined in (1.7.24).



32 CHAPTER 1. THE EINSTEIN EQUATIONS

Proof: : Given any symmetric two-covariant tensor field A let ψ denote the
trace of A dived by n, set

Bij = Aij − ψgij .

Then Bij is symmetric and traceless. Similarly to (1.7.25), we let Y be any
solution of the equation

L(Y )i = DjB̃
ij .

Here, of course, C(Y )ij := DiY j + DjY i − 2
nDkY

kgij and L(Y )i = DiC(Y )ij .
Then Bij − C(Y )ij is transverse and traceless, and we have indeed

Aij = ψgij︸︷︷︸
∈C∞×g

+Bij − C(Y )ij︸ ︷︷ ︸
∈TT

+C(Y )ij︸ ︷︷ ︸
∈ImC

.

The L2-orthogonality of the factors is easily verified; compare (1.7.26). 2

1.7.5 Some linear elliptic theory

The main ingredients of the existence proof which we will present shortly are
the following:

1. Function spaces: one uses the spaces Hk, k ∈ N, defined as the completion
of the space of smooth tensor fields on M with respect to the norm

‖u‖k :=

√ ∑
0≤`≤k

∫
M
|D`u|2dµ , (1.7.27)

where D`u is the tensor of `-th covariant derivatives of u with respect
to some covariant derivative operator D. For compact manifolds2 this
space is identical with that of fields in L2 such that their distributional
derivatives of order less than or equal to k are also in L2. Again for
compact manifolds, different choices of measure dµ (as long as it remains
absolutely continuous with respect to the coordinate one), of the tensor
norm | · |, or of the connection D, lead to the same space, with equivalent
norm.

Recall that if u ∈ L2 then ∂iu = ρi in a distributional sense if for every
smooth compactly supported vector field we have∫

M

Xiρi = −
∫
M

DiX
iu .

More generally, let A be a linear differential operator of order m and let At

be its formal L2 adjoint, which is the operator obtained by differentiating by
parts: ∫

M

〈u, L†v〉 :=

∫
M

〈Lu, v〉 , u, v ∈ Cmc ;

the above formula defines L† uniquely if it holds for all u, v in the space
Cmc of Cm compactly supported fields. (Incidentally, the reader will note by

2For non-compact manifolds this is not always the case, compare [9].
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comparing the last two equations that the formal adjoint of the derivative
operator is minus the divergence operator.) Then, for u ∈ L1

loc (this is the
space of measurable fields u which are Lebesgue-integrable on any compact
subset of the manifold), the distributional equation Lu = ρ is said to hold if
for all smooth compactly supported v’s we have∫

M

〈u, L†v〉 =

∫
M

〈ρ, v〉 .

One sometimes talks about weak solutions rather than distributional ones.

The spaces Hk are Hilbert spaces with the obvious scalar product:

〈u, v〉k =
∑

0≤`≤k

∫
M
〈D`u,D`v〉dµ .

The Sobolev embedding theorem [10] asserts that Hk functions are, lo-
cally, of Ck

′
differentiability class, where k′ is the largest integer satisfying

k′ < k − n/2 . (1.7.28)

On a compact manifold the result is true globally,

Hk ⊂ Ck
′
, (1.7.29)

with the inclusion map being continuous:

‖u‖Ck′ ≤ C‖u‖Hk . (1.7.30)

2. Orthogonal complements in Hilbert spaces: Let H be a Hilbert space, and
let E be a closed linear subspace of H. Then (see, e.g., [154]) we have the
direct sum

H = E ⊕ E⊥ . (1.7.31)

This result is sometimes called the projection theorem.

3. Rellich-Kondrashov compactness: we have the obvious inclusion

Hk ⊂ Hk′ if k ≥ k′ .

The Rellich-Kondrashov theorem (see, e.g., [1, 10, 78, 101]) asserts that,
on compact manifolds, this inclusion is compact. Equivalently,3 if un is
any sequence satisfying ‖un‖k ≤ C, and if k′ < k, then there exists a
subsequence uni and u∞ ∈ Hk such that uni converges to u∞ in Hk′

topology as i tends to infinity.

3In this statement we have also made use of the Tichonov-Alaoglu theorem, which asserts
that bounded sets in Hilbert spaces are weakly compact; cf., e.g. [154].
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4. Elliptic regularity: If Y ∈ L2 satisfies LY ∈ Hk in a distributional sense,
with L — an elliptic operator of order m with smooth coefficients, then
Y ∈ Hk+m, and Y satisfies the equation in the classical sense. Further,
on compact manifolds for every k there exists a constant Ck such that

‖Y ‖k+m ≤ Ck(‖LY ‖k + ‖Y ‖0) . (1.7.32)

Our aim is to show that solvability of (1.7.25) can be easily studied using the
above basic facts. We start by verifying ellipticity of L. Recall that the symbol
σ of a linear partial differential operator L of the form

L =
∑

0≤`≤m
ai1...i`Di1 . . . Di` ,

where the ai1...i` ’s are linear maps from fibers of a bundle E to fibers of a bundle
F , is defined as the map

T ∗M 3 p 7→ σ(p) := ai1...impi1 . . . pim .

Thus, every derivative Di is replaced by pi, and all terms other than the top
order ones are ignored. An operator is said to be elliptic4 if the symbol is an
isomorphism of fibers for all p 6= 0. In our case (1.7.25) the operator L acts on
vector fields and produces vector fields, with

TM 3 Y → σ(p)(Y ) = pi(p
iY j + pjY i − 2

n
pkY

kg̃ij)∂j ∈ TM . (1.7.33)

(The indices on pi have been raised with the metric g̃.) To prove bijectivity
of σ(p), p 6= 0, it suffices to verify that σ(p) has trivial kernel. Assuming
σ(p)(Y ) = 0, a contraction with pj gives

pjpi(p
iY j + pjY i − 2

n
pkY

kg̃ij) = |p|2pjY j(2− 2

n
) = 0 ,

hence pjY
j = 0 for n > 1 since p 6= 0. Contracting instead with Yj and using

the last equality we obtain

Yjpi(p
iY j + pjY i − 2

n
pkY

kg̃ij) = |p|2|Y |2 = 0 ,

and σ(p) has no kernel, as desired.

To gain some more insight into the conformal vector Laplacian L let us
calculate its formal L2–adjoint: let thus X and Y be smooth, or C2, we write∫
M
XiL(Y )idµg̃ =

∫
M
XiD̃j(D̃

iY j + D̃jY i − 2

n
g̃ijD̃kY

k) dµg̃

= −
∫
M
D̃jXi(D̃

iY j + D̃jY i − 2

n
g̃ijD̃kY

k) dµg̃

4See [2, 127] for more general notions of ellipticity.
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= −1

2

∫
M

(D̃jXi + D̃jXi) (D̃iY j + D̃jY i − 2

n
g̃ijD̃kY

k)︸ ︷︷ ︸
symmetric in i and j

dµg̃

= −1

2

∫
M

(D̃jXi + D̃jXi −
2

n
D̃kX

kg̃ij) (D̃iY j + D̃jY i − 2

n
g̃ijD̃kY

k)︸ ︷︷ ︸
trace free

dµg̃

= −
∫
M

(D̃jXi + D̃jXi −
2

n
D̃kX

kg̃ij)D̃
iY j dµg̃

=

∫
M
D̃i(D̃jXi + D̃jXi −

2

n
D̃kX

kg̃ij)Y
j dµg̃

=

∫
M
L(X)jYj dµg̃ . (1.7.34)

Recall that the formal adjoint L† of L is defined by integration by parts:∫
〈u, Lv〉 =

∫
〈L†u, v〉

for all smooth compactly supported fields u, v. (Note that the definition of a
self-adjoint operator further requires an equality of domains, an issue which is,
fortunately, completely ignored in the formal definition.) We have thus shown
that the conformal vector Laplacian is formally self adjoint :

L† = L . (1.7.35)

We further note that the fourth line in (1.7.34) implies∫
M
YiL(Y )i = −1

2

∫
M
|C(Y )|2 , (1.7.36)

in particular if Y is C2 then

L(Y ) = 0 ⇐⇒ C(Y ) = 0 . (1.7.37)

This implies that Riemannian manifolds for which L has a non-trivial kernel
are very special.

Remark 1.7.3 Solutions of the equation C(Y ) = 0 are called conformal Killing
vectors. The existence of non-trivial conformal Killing vectors implies the exis-
tence of conformal isometries of (M, g). A famous theorem of Lelong-Ferrand –
Obata [107, 130] (compare [105]) shows that, on compact manifolds in dimensions
greater than or equal to three, there exists a conformal rescaling such that Y is a
Killing vector, except if (M, g) is conformally isometric to Sn with a round met-
ric. In the former case (the conformally rescaled) (M, g) has a non-trivial isometry
group, which imposes restrictions on the topology of M , and forces g to be very
special. For instance, the existence of non-trivial Lie group of isometries of a com-
pact manifold implies that M admits an S1 action, which is a serious topological
restriction, and in fact is not possible for “most” topologies (see, e.g., [64, 65], and
also [66] and references therein for an analysis in dimension four). It is also true
that even if M admits S1 actions, then there exists an open and dense set of metrics,
in a Ck(n) topology, or in a Hk′(n) topology, with appropriate k(n), k′(n) [23], for
which no nontrivial solutions of the over-determined system of equations C(Y ) = 0
exist.
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In order to continue we shall need a somewhat stronger version of (1.7.32):

Proposition 1.7.4 Let L be an elliptic operator of order m on a compact man-
ifold. If there are no non-trivial smooth solutions of the equation L(Y ) = 0,
then (1.7.32) can be strengthened to

‖Y ‖k+m ≤ C ′k‖L(Y )‖k . (1.7.38)

Remark 1.7.5 Equation (1.7.38) implies that L has trivial kernel, which shows
that the condition on the kernel is necessary.

Proof: Suppose that the result does not hold, then for every n ∈ N there exists
Yn ∈ Hk+m such that

‖Yn‖k+m ≥ n‖L(Yn)‖k . (1.7.39)

Multiplying Yn by an appropriate constant if necessary we can suppose that

‖Y ‖L2 = 1 . (1.7.40)

The basic elliptic inequality (1.7.32) gives

‖Yn‖k+m ≤ C2(‖LYn‖k + ‖Yn‖0) ≤ C2

n
‖Yn‖k+m + C2 ,

so that for n such that C2/n ≤ 1/2 we obtain

‖Yn‖k+m ≤ 2C2 .

It follows that Yn is bounded in Hk+m; further (1.7.39) gives

‖L(Yn)‖k ≤
2C2

n
. (1.7.41)

By the Rellich-Kondrashov compactness we can extract a subsequence, still
denoted by Yn, such that Yn converges in L2 to Y∗ ∈ Hk+m. Continuity of the
norm together with L2 convergence implies that

‖Y∗‖L2 = 1 , (1.7.42)

so that Y∗ 6= 0. One would like to conclude from (1.7.41) that L(Y∗) = 0, but
that is not completely clear because we do not know whether or not

LY∗ = lim
n→∞

LYn .

Instead we write the distributional equation: for every smooth X we have∫
M
〈L(Yn), X〉 =

∫
M
〈Yn, L†(X)〉 .

Now, L(Yn) tends to zero in L2 by (1.7.41), and Yn tends to Y∗ in L2, so that
passing to the limit we obtain

0 =

∫
M
〈Y∗, L†(X)〉 .

It follows that Y∗ satisfies L(Y∗) = 0 in a distributional sense. Elliptic regularity
implies that Y∗ is a smooth solution of LY∗ = 0, it is non-trivial by (1.7.42), a
contradiction. 2

We are ready to prove now:
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Theorem 1.7.6 Let L be any elliptic partial differential operator of order m on
a compact manifold and suppose that the equations Lu = 0, L†v = 0 have no
non-trivial smooth solutions, where L† is the formal adjoint of L. Then for any
k ≥ 0 the map

L : Hk+m → Hk

is an isomorphism.

Proof: An element of the kernel is necessarily smooth by elliptic regularity, it
remains thus to show surjectivity. We start by showing that the image of L is
closed: let Zn be a Cauchy sequence in ImL, then there exists Z∞ ∈ L2 and
Yn ∈ Hk+m such that

LYn = Zn
L2

→ Z∞ .

Applying (1.7.38) to Yn − Y` we find that Yn is Cauchy in Hk+m, therefore
converges in Hk+m to some element Y∞ ∈ Hk+m. By continuity of L the
sequence LYn converges to LY∞ in L2, hence Z∞ = LY∞, as desired.

Consider, first, the case k = 0. By the orthogonal decomposition theorem
we have now

L2 = ImL⊕ (ImL)⊥ ,

and if we show that (ImL)⊥ = {0} we are done. Let, thus, Z ∈ (ImL)⊥, this
means that ∫

M
〈Z,L(Y )〉 = 0 (1.7.43)

for all Y ∈ Hm+2. In particular (1.7.43) holds for all smooth Y , which implies
that L†(Z) = 0 in a distributional sense. Now, the symbol of L† is the transpose
of the symbol of L, which shows that L† is also elliptic. We can thus use elliptic
regularity to conclude that Z is smooth, and Z = 0 follows.

The result in L2 together with elliptic regularity immediately imply the
result in Hk. 2

1.7.6 The scalar constraint equation on compact manifolds, τ 2 ≥
2n

(n−1)
Λ

Theorem 1.7.6, together with Equation (1.7.37) and Remark 1.7.3, gives a rea-
sonably complete description of the solvability of (1.7.25). We simply note
that if B̃ij there is smooth, then the associated solution will be smooth by el-
liptic regularity. To finish the presentation of the conformal method we need
to address the question of existence of solutions of the Lichnerowicz equation
(1.7.18).

A complete description can be obtained when the constant β defined in
(1.7.19) satisfies

β :=

[
n− 2

4n
τ2 − n− 2

2(n− 1)
Λ

]
≥ 0 , (1.7.44)

this will certainly be the case if Λ ≤ 0. In this case, to emphasise positivity we
will write

n− 2

4n
τ2

Λ
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for β, thus rewriting (1.7.18) as

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ̃2φ(2−3n)/(n−2) +

n− 2

4n
τ2

Λφ
n+2
n−2 . (1.7.45)

As already pointed out in Section 1.7.1, the case σ = 0 corresponds to the
so-called Yamabe equation; in this case solutions of (1.7.45) produce metrics
with constant scalar curvature −(n − 1)τ2

Λ. We will take it for granted that
one can first deform the metric conformally so that R̃ is constant, and we will
assume that this has been done. It should be recognised that making use of the
solution of the Yamabe problem sweeps the real difficulties under the carpet.
Nevertheless, there remains some analysis to do even after the Yamabe part of
the problem has been solved.

In what follows we will assume smoothness of all objects involved. More
recently, these equations have been studied with metrics of low differentiabil-
ity [34, 115]; this was motivated in part by work on the evolution problem for
“rough initial data” [98–100, 152]. Boundary value problems for the constraint
equations, with nonlinear boundary conditions motivated by black holes, were
considered in [59, 116].

In order to provide a complete answer to the question of solvability of
(1.7.45), as first done by Isenberg [87], we start by showing that (1.7.45) has
no solutions in several cases: For this, suppose that there exists a solution, and
integrate (1.7.45) over M :∫

M

(
n− 2

4(n− 1)
R̃− σ̃2φ(2−3n)/(n−2) +

n− 2

4n
τ2

Λφ
n+2
n−2

)
= 0 .

Since we want φ to be positive, there are obvious obstructions for this equation
to hold, and hence for existence of positive solutions: for example, if σ̃2 ≡ 0 and
τ2

Λ = 0 then there can be a positive solution only if R̃ vanishes (and then φ is
necessarily constant, e.g. by an appropriate version of the maximum principle).
Analysing similarly other possibilities one finds:

Proposition 1.7.7 Suppose that

1. σ̃2 ≡ 0 ≡ τ2
Λ, but R̃ 6= 0;

2. σ̃2 ≡ 0, τ2
Λ 6= 0 but R̃ ≥ 0;

3. τ2
Λ ≡ 0, σ̃2 6≡ 0, but R̃ ≤ 0.

Then (1.7.45) has no positive solutions.

We emphasize that the non-existence result is not a failure of the conformal
method to produce solutions, but a no-go result; we will return to this issue in
Proposition 1.7.16 below.

It turns out that there exist positive solutions for all other cases. This will
be proved using the monotone iteration scheme, which we are going to describe
now. For completeness we start by proving a simple version of the maximum
principle:
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Proposition 1.7.8 Let (M, g) be compact, suppose that c < 0 and let u ∈
C2(M). If

∆u+ cu ≥ 0 , (1.7.46)

then u ≤ 0. If equality in (1.7.46) holds then u ≡ 0.

Proof: Suppose that u has a strictly positive maximum at p. In local coordi-
nates around p we then have

gij∂i∂ju− gijΓkij∂ku ≥ −cu .

The second term on the left-hand-side vanishes at p because ∂u vanishes at p,
the first term is non-positive because at a maximum the matrix of second partial
derivatives is non-positive definite. On the other hand the right-hand-side is
strictly positive, which gives a contradiction. If equality holds in (1.7.46) then
both u and minus u are non-positive, hence the result. 2

Consider, now, the operator

L = ∆g̃ + c

for some c < 0. The symbol of L reads

σL(p) = gijpipj 6= 0 if p 6= 0 ,

which shows that L is elliptic. It is well-known that ∆g̃ is formally self-adjoint
(with respect to the measure dµg̃), and Proposition 1.7.8 allows us to apply
Theorem 1.7.6 to conclude existence of Hk+2 solutions of the equation

Lu = ρ (1.7.47)

for any ρ ∈ Hk; u is smooth if ρ and the metric are.
Returning to the Lichnerowicz equation (1.7.45), let us rewrite this equation

in the form
∆g̃φ = F (φ, x) . (1.7.48)

A C2 function φ+ is called a super-solution of (1.7.48) if

∆g̃φ+ ≤ F (φ+, x) . (1.7.49)

Similarly a C2 function φ− is called a sub-solution of (1.7.48) if

∆g̃φ− ≥ F (φ−, x) . (1.7.50)

A solution is both a sub-solution and a super-solution. This shows that a
necessary condition for existence of solutions is the existence of sub- and super-
solutions. It turns out that this condition is also sufficient, modulo an obvious
inequality between φ− and φ+:

Theorem 1.7.9 Suppose that (1.7.48) admits a sub-solution φ− and a super-
solution φ+ satisfying

φ− ≤ φ+ .

If F is differentiable in φ, then there exists a C2 solution φ of (1.7.48) such
that

φ− ≤ φ ≤ φ+ .

(φ is smooth if F is.)
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Proof: The argument is known as the monotone iteration scheme, or the
method of sub- and super-solutions. We set

φ0 = φ+ ,

and our aim is to construct a sequence of functions such that

φ− ≤ φn ≤ φ+ , (1.7.51a)

φn+1 ≤ φn . (1.7.51b)

We start by chosing c to be a positive constant large enough so that the function

φ→ Fc(φ, x) := F (φ, x)− cφ

is monotone decreasing for φ− ≤ φ ≤ φ+. This can clearly be done on a compact
manifold. By what has been said we can solve the equation

(∆g̃ − c)φn+1 = Fc(φn, x) .

Clearly (1.7.51a) holds with n = 0. Suppose that (1.7.51a) holds for some n,
then

(∆g̃ − c)(φn+1 − φ+) = Fc(φn, x)− ∆g̃φ+︸ ︷︷ ︸
≤F (φ+,x)

−cφ+

≥ Fc(φn, x)− Fc(φ+, x) ≥ 0 ,

by monotonicity of Fc. The maximum principle gives

φn+1 ≤ φ+ ,

and induction establishes the second inequality in (1.7.51a). Similarly we have

(∆g̃ − c)(φ− − φn+1) = ∆g̃φ−︸ ︷︷ ︸
≥F (φ−,x)

−cφ− − Fc(φn, x)

≥ Fc(φ−, x)− Fc(φn, x) ≥ 0 ,

and (1.7.51a) is established. Next, we note that (1.7.51a) implies (1.7.51b) with
n = 0. To continue the induction, suppose that (1.7.51b) holds for some n ≥ 0,
then

(∆g̃ − c)(φn+2 − φn+1) = Fc(φn+1, x)−−Fc(φn, x) ≥ 0 ,

again by monotonicity of Fc, and (1.7.51b) is proved.
Since φn is monotone decreasing and bounded there exists φ such that φn

tends pointwise to φ as n tends to infinity. Continuity of F gives

Fn := F (φn, x)→ F∞ = F (φ, x) ,

again pointwise. By the Lebesgue dominated theorem Fn converges to F∞ in
L2, and the elliptic inequality (1.7.32) gives

‖φn − φm‖H2 ≤ C2(‖(∆g̃ − c)(φn − φm)‖L2 + ‖φn − φm‖L2 .
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Completeness of H2 implies that there exists φ∞ ∈ H2 such that φn → φ∞
in H2. Recall that from any sequence converging in L2 we can extract a sub-
sequence converging pointwise almost everywhere, which shows that φ = φ∞
almost everywhere, hence φ ∈ H2. Continuity of ∆g̃ + c on H2 shows that

(∆g̃ − c)φ = lim
n→∞

(∆g̃ − c)φn = Fc(φ, x) = F (φ, x)− cφ ,

so that φ satisfies the equation, as desired. The remaining claims follow from
elliptic regularity theory. 2

In order to apply Theorem 1.7.9 to the Lichnerowicz equation (1.7.45) we
need appropriate sub- and super-solutions. The simplest guess is to use con-
stants, and we start by exploring this possibility. Setting φ− = ε for some small
constant ε > 0, we need

0 = ∆g̃ε ≥ F (ε, x) ≡ n− 2

4(n− 1)
R̃ε− σ̃2ε(2−3n)/(n−2) +

n− 2

4n
τ2

Λε
n+2
n−2 (1.7.52)

for ε small enough. Since 2−3n is negative and n+2
n−2 is larger than one, we find:

Lemma 1.7.10 A sufficiently small positive constant is a subsolution of (1.7.45)
if

1. R̃ < 0, or if

2. σ̃2 > 0.

Next, we set φ+ = M , with M a large constant, and we need to check that

0 ≤ n− 2

4(n− 1)
R̃M − σ̃2M (2−3n)/(n−2) +

n− 2

4n
τ2

ΛM
n+2
n−2 . (1.7.53)

We see that:

Lemma 1.7.11 A sufficiently large positive constant is a supersolution of (1.7.45)
if

1. R̃ > 0, or if

2. τ2
Λ > 0.

As an immediate Corollary of the two Lemmata and of Theorem 1.7.9 one
has:

Corollary 1.7.12 The Lichnerowicz equation can always be solved if R̃ is
strictly negative and τΛ 6= 0.

Before proceeding further it is convenient to classify the metrics on M as
follows: we shall say that g ∈ Y + if g can be conformally deformed to achieve
positive scalar curvature. We shall say that g ∈ Y 0 if g can be conformally
rescaled to achieve zero scalar curvature but g 6∈ Y +. Finally, we let Y − be the
collection of the remaining metrics. It is known that all classes are non-empty,
and that every metric belongs to precisely one of the classes.

One then has the following result of Isenberg [87]:
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Theorem 1.7.13 The following table summarizes whether or not the Lichnerow-
icz equation (1.7.45) admits a positive solution:

σ̃2 ≡ 0, τΛ = 0 σ̃2 ≡ 0, τΛ 6= 0 σ̃2 6≡ 0, τΛ = 0 σ̃2 6≡ 0, τΛ 6= 0

g̃ ∈ Y + no no yes yes

g̃ ∈ Y 0 yes no no yes

g̃ ∈ Y − no yes no yes

For initial data in the class (Y 0, σ ≡ 0, τΛ = 0) all solutions are constants, and
any positive constant is a solution. In all other cases the solutions are unique.

Proof: All the “no” entries are covered by Proposition 1.7.7. The “yes” in the
first column follows from the fact that constants are (the only) solutions in this
case.

To cover the remaining “yes” entries, let us number the rows and columns
of the table as in a matrix Tij . Then T32 and T34 are the contents of Corol-
lary 1.7.12.

In the positive Yamabe class, Lemma 1.7.11 shows that a sufficiently large
constant provides a supersolution. A small constant provides a subsolution if
σ̃2 has no zeros; this establishes T13 and T14 for strictly positive σ̃2. However, it
could happen that σ̃2 has zeros. To cover this case, as well as the zero-Yamabe-
class case T24, we use a mixture of an unpublished argument of E. Hebey [82]
and of that in [117]. Similarly to several claims above, this applies to the
following general setting: Let h, a, and f be smooth functions on a compact
Riemannian manifold M , with h ≥ 0, a ≥ 0 and f ≥ 0. Consider the equation

∆g̃u− hu = fuα − au−β , (1.7.54)

with α > 1 and β > 0. We further require f + h 6≡ 0 and a 6≡ 0. (All those
hypotheses are satisfied in T13, T14, and T24.) Then there exists a function u1

such that
∆g̃u1 − (h+ f)u1 = −a .

The function u1 is strictly positive by the maximum principle. For t > 0
sufficiently small the function ut = tu1 is a subsolution of (1.7.54): indeed,

from ta ≤ at−βu−β1 and ftu1 ≥ ftαuα1 for t small enough we conclude that

∆g̃ut − hut = −ta+ tu1f ≥ −at−βu−β1 + ftαuα1 .

The existence of a solution follows again from Theorem 1.7.9.
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Uniqueness in all R̃ ≥ 0 cases, except T21, follows from the fact that the
function φ 7→ F (φ, x), defined in (1.7.52), is monotonously increasing for non-
negative R̃: indeed, let φ1 and φ2 be two solutions of (1.7.48), then

∆g̃(φ2 − φ1) + (−
∫ φ2

φ1

∂φF (φ, x)dφ︸ ︷︷ ︸
=:c

)(φ2 − φ1) = 0 .

It follows from the monotonicity properties of F that c ≤ 0. A version of the
maximum principle, slightly stronger than the one proved in Proposition 1.7.8,
gives φ1 = φ2 whenever the function c is not identically zero.

To prove uniqueness when R̃ < 0, suppose that there exist two distinct
solutions φa, a = 1, 2; exchanging the φa’s if necessary we can without loss of
generality assume that there exist points such that φ2 > φ1. By construction,

the scalar curvature R of the metric g := φ
4

n−2

2 g̃ satisfies

n− 2

4(n− 1)
R = σ̃2 − n− 2

4n
τ2

Λ . (1.7.55)

Because the whole construction is conformally covariant, the function

φ :=
φ1

φ2

satisfies again (1.7.45) with respect to the metric g:

∆gφ−
n− 2

4(n− 1)
Rφ = −σ̃2φ(2−3n)/(n−2) +

n− 2

4n
τ2

Λφ
n+2
n−2 . (1.7.56)

In view of (1.7.55), this can be rewritten as

∆gφ = −σ̃2(φ(2−3n)/(n−2) − φ) +
n− 2

4n
τ2

Λ(φ
n+2
n−2 − φ) . (1.7.57)

By choice, the minimum value of φ, say a, is strictly smaller than one. At the
point where the minimum is attained we obtain

0 ≤ ∆gφ = −σ̃2(a−
3n−2
n−2 − a)︸ ︷︷ ︸
I

+
n− 2

4n
τ2

Λ(a
n+2
n−2 − a)︸ ︷︷ ︸

II

. (1.7.58)

But both I and II are strictly negative for a < 1, which gives a contradiction,
and establishes uniqueness. 2

Remark 1.7.14 The question of stability of solutions of the Lichnerowicz equation
has been addressed in [?]: surprisingly enough, examples are constructed there
where stability fails in dimensions n ≥ 6.

As a Corollary of Theorem 1.7.13 one obtains:

Theorem 1.7.15 Any compact manifold M carries some vacuum initial data
set.
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Proof: We can construct non-trivial solutions of the vector constraint equation
using the method of Section 1.7.4, which takes us to the last two columns of
the table of Theorem 1.7.13. Choosing some τ2

Λ > 0 we can then solve the
Lichnerowicz equation whatever the Yamabe type of g by the last column in
that table. 2

As already pointed out, we have the following result, which highlights the
importance of Isenberg’s Theorem 1.7.6:

Proposition 1.7.16 All CMC solutions of the vacuum constraint equation can
be constructed by the conformal method.

Proof: A trivial, albeit not very enlightening proof goes as follows: if (M, g,K)
is a CMC vacuum initial data set, the result is established by setting Y = 0,
φ = 1, L̃ij = Kij − trK

n gij . 2

A natural question is whether the set of solutions to the constraint equations forms
a manifold. This was first considered by Fisher and Marsden [67], who provided
a Fréchet manifold structure; Banach manifold structures have been constructed
in [50], and a Hilbert manifold structure for asymptotically flat initial data sets
in [18] (the construction there applies to more general classes of data).

1.7.7 The scalar constraint equation on compact manifolds, τ 2 <
2n

(n−1)
Λ

Theorem 1.7.13 gives an exhaustive description of CMC initial data on compact
manifolds when τ2 ≥ 2n

2(n−1)Λ. Much less is known for Λ’s exceeding this bound.
As already pointed out, there is observational evidence that Λ might be positive,
hence there is direct physical interest for a complete understanding of this case.

When τ = 0 = σ2 but Λ > 0 we are in the positive case of the Yamabe
problem. Obvious examples of three dimensional compact manifolds carrying
a metric with positive scalar curvature are given by

S3/Γ , S2 × S1 , (1.7.59)

where Γ is a discrete subgroup of O(3) without fixed points. The quotient
manifolds S2/Γ are called spherical manifolds.

Evolving the time-symmetric vacuum initial data set (Sn/Γ, g̊n, 0), where g̊n de-
notes a round metric on Sn, one obtains the (n+ 1)-dimensional de Sitter metrics:

g = −(1− r2/`2)dt2 +
dr2

1− r2/`2
+ r2g̊n−1 ,

where ` > 0 is related to the cosmological constant Λ by the formula 2Λ = n(n −
1)/`2.

It turns out that a complete description of the possible topologies of three
dimensional compact manifolds carrying metrics with positive scalar curvature
can be given using the connected sum construction, which proceeds as follows:
consider any two manifolds Ma, a = 1, 2. Consider two sets Ba ⊂ Ma, each
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diffeomorphic to a ball in Rn. One then defines the manifold M1#M2, called
the connected sum of M1 and M2, as the set

(M1 \B1) ∪ ([0, 1]× Sn−1) ∪ (M2 \B2)

in which the sphere ∂B1 is identified in the obvious way with {0} × Sn−1, and
the sphere ∂B2 is identified with {1}×Sn−1. In other words, one removes balls
from the Ma’s and connects the resulting spherical boundaries with a “neck”
[0, 1]× Sn−1.

Consider, then, two manifolds (Ma, ga) with positive scalar curvature. Gro-
mov and Lawson [80] have shown how to construct a metric of positive scalar
curvature onM1#M2. This implies that any compact, orientable three-manifold
which is a connected sum of spherical manifolds and of copies of S2×S1 carries
a metric of positive scalar curvature. The resolution of the Poincaré conjec-
ture by Perelman [134–136] completes previous work of Schoen-Yau [146] and
Gromov-Lawson [81] on this topic, and proves the converse: these are the only
compact three-manifolds with positive scalar curvature.

Under the current conditions, a pointwise obstruction to existence of solu-
tions of the Lichnerowicz equation can be derived as follows [83]: Let p0 be a
point where the minimum of φ is attained, set ε := φ(p0). To emphasize the
current sign, we define

Λτ :=

[
−n− 2

4n
τ2 +

n− 2

2(n− 1)
Λ

]
≥ 0 . (1.7.60)

At the minimum the Laplacian of φ is non-negative, and there the Lichnerowicz
equation gives

0 ≤ ∆g̃ε =
n− 2

4(n− 1)
R̃ε− σ2ε(2−3n)/(n−2) − Λτ ε

(n+2)/(n−2) (1.7.61)

But the right-hand-side is negative if Λτ ≥ 0 and if σ2 is sufficiently large, which
gives an obstruction to existence. Setting a := ε4/(n−2), (1.7.61) becomes

0 ≤ n− 2

4(n− 1)
R̃− σ2ε−4(n−1)/(n−2) − Λτ ε

4/(n−2)

=
n− 2

4(n− 1)
R̃− σ2a−(n−1) − Λτa .

The condition of the vanishing of the derivative with respect to a gives

(n− 1)σ2a−n = Λτ ,

and so there cannot be a positive minimum of φ, and hence a positive solution,
if the condition

Λτσ
2/(n−1) ≥ (n− 1)

(
n− 2

4n(n− 1)
R̃+

)n/(n−1)

, (1.7.62)

where R̃+ is the positive part of R̃, holds everywhere. In other words, violation
of (1.7.62) somewhere is a necessary condition for existence of solutions, keeping
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in mind that equality everywhere would lead to ε = 0 as the only possibility for
a non-negative minimum of φ.

Note that the above calculation can be used to obtain a lower bound on φ
when σ2 has no zeros or when R̃ is strictly positive.

One can also obtain integral, instead of pointwise, conditions for non-existence
of solutions, see [83, Theorems 2.1 and 2.2] for details.

In [83, Corollaries 3.1 and 3.2] several criteria for existence have been given,
essentially amounting to the requirement that σ2 be small and without zeros.
For example, on compact manifolds such that R̃ ≥ 0 but not identically zero,
there exists a constant C depending upon g̃ and n such that, if Λτ > 0 and
σ2 > 0 and

Λn−1
τ

∫
M
σ2 ≤ C ,

then a solution exists. This is proved there using the Mountain Pass Lemma [139].

Delaunay metrics

An interesting class of metrics on S1 × Sn−1 with positive scalar curvature is
provided by the Delaunay metrics which, for n ≥ 3, take the form

g = u4/(n−2)(dy2 + g̊n−1) , (1.7.63)

with u = u(y) and where, as before, g̊n−1 is the unit round metric on Sn−1
p .

The metrics are spherically symmetric, hence conformally flat. The constant
scalar curvature condition R(g) = n(n− 1) reduces to an ODE for u:

u′′ − (n− 2)2

4
u+

n(n− 2)

4
u
n+2
n−2 = 0. (1.7.64)

Solutions are determined by two parameters which correspond respectively to
a minimum value ε for u, with

0 ≤ ε ≤ ε̄ = (
n− 2

n
)
n−2

4 , (1.7.65)

called the Delaunay parameter or neck size, and a translation parameter along
the cylinder. An ODE analysis [121] shows that all the positive solutions are
periodic. The degenerate solution with ε = 0 corresponds to the round metric
on a sphere from which two antipodal points have been removed. The solution
with ε = ε̄ corresponds to the rescaling of the cylindrical metric so that the
scalar curvature has the desired value.

The Delaunay metrics provide an example of countable non-uniqueness of
solutions of the Yamabe equation on S1×Sn−1: for any T > 0 and ` ∈ N∗ there
exists a solution u` of (1.7.64) with period T/`. Each such function u` provides
a metric with constant scalar curvature n(n− 1) on the manifold on which the
coordinate y of (1.7.63) is T -periodic.

The ODE (1.7.64) was first studied by Fowler [69, 70], however the name is in anal-
ogy with the Delaunay surfaces: the complete, periodic CMC surfaces of revolution
in R3 [61].
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Regarding the Delaunay metrics as singular solutions of the Yamabe equation
on (Snp , g0) one has a number of uniqueness results. Among these are the facts that
no solution with a single singular point exists, and that any solution with exactly
two isolated singular points must be conformally equivalent to a Delaunay metric.

It is also known that conformally flat metrics, with constant positive scalar
curvature, and with an isolated singularity of the conformal factor are necessarily
asymptotic to a Delaunay metric [102]; in fact, in dimensions n = 3, 4, 5 the con-
formal flatness condition is not needed [113]. Specifically, in spherical coordinates
about an isolated singularity of the conformal factor, there is a half-Delaunay metric
which g converges to, exponentially fast in r, along with all of its derivatives. This
fact is used in [119–121, 138, 140] where complete, constant scalar curvature metrics,
conformal to the round metric on Sp \ {p1, . . . , pk} were studied and constructed.
This is one instance of the more general “singular Yamabe problem”.

The time-evolution of time-symmetric Delaunay data leads to the Kottler–Schwarzschild–
de Sitter [103] metrics in n+ 1 dimensions, with cosmological constant Λ > 0 and
mass m ∈ R:

ds2 = −V dt2 + V −1dr2 + r2g̊n−1, where V = V (r) = 1− 2m

rn−2
− r2

`2
, (1.7.66)

where ` > 0 is related to the cosmological constant Λ by the formula 2Λ = n(n −
1)/`2. Comparing (1.7.66) and (1.7.63) we find

r = u
2

n−2 , r
dy

dr
= V −1/2 , (1.7.67)

which allows us to determine y as a function of r on any interval of r’s on which V
has no zeros.

To avoid a singularity lying at finite distance on the level sets of t one needs
m > 0. Equation (1.7.66) provides then a spacetime metric satisfying the Einstein
equations with cosmological constant Λ > 0 and with well behaved spacelike hyper-
surfaces when one restricts the coordinate r to an interval (rb, rc) on which V (r) is
positive; such an interval exists if and only if(

2

(n− 1)(n− 2)

)n−2

Λn−2m2n2 < 1 . (1.7.68)

When n = 3 this corresponds to the condition that 9m2Λ < 1.

1.7.8 Matter fields

The conformal method easily extends to CMC constraint equations for some
non-vacuum initial data, e.g. the Einstein-Maxwell system [87] where one ob-
tains results very similar to those of Theorem 1.7.13. However, other important
examples, such as the Einstein-scalar field system [39–41, 83], require more ef-
fort and are not as fully understood.

Recall that the energy density µ and the energy-momentum density J of
matter fields is related to the geometry through the formulae

16πµ := R(g)− |K|2g + (trgK)2 − 2Λ (1.7.69)

8πJ i := Di(K
ij − trgKg

ij) . (1.7.70)
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If µ and J have been prescribed, this becomes a system of equations for φ and
L̃

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ2φ

2−3n
n−2 + βφ

n+2
n−2

−4(n− 2)

(n− 1)
φ
n+2
n−2πµ . (1.7.71)

D̃iL̃
ij = 8πφ

2(n+2)
n−2 J i +

n− 1

n
φ

2n
n−2 D̃jτ . (1.7.72)

It is important to realize that the conformal method has no physical con-
tents, and is an ansatz for constructing solutions of the constraint equations.
The question of scaling properties of µ and J under conformal transformations
is thus largely a matter of convenience. For instance, when dτ = 0, a convenient
prescription for J is to set

J̃ i = φ
2(n+2)
n−2 J i , (1.7.73)

and to view J̃ as free data, for then (1.7.72) decouples from (1.7.71). There is
then a natural rescaling of µ which arises from the dominant energy condition

µ2 ≥ gijJ iJ j : since gij = φ
4

n−2 g̃ij , under (1.7.73) we have

gijJ
iJ j = φ

4
n−2
− 4(n+2)

n−2 g̃ij J̃
iJ̃ j = φ−

4(n+1)
n−2 g̃ij J̃

iJ̃ j ,

and so the dominant energy condition will be covariant under these rescalings
if we set

µ̃ = φ
2(n+1)
n−2 µ , (1.7.74)

viewing µ̃ as the free data, and µ as the derived ones. The scaling (1.7.73)-
(1.7.74) is known to us from [35], where it has been termed York scaling. With
those definitions (1.7.71)-(1.7.72) become

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ2φ

2−3n
n−2 + βφ

n+2
n−2

−4(n− 2)

(n− 1)
φ−

n
n−2πµ̃ . (1.7.75)

D̃iL̃
ij = 8πJ̃ i +

n− 1

n
φ

2n
n−2 D̃jτ . (1.7.76)

1.7.9 Maxwell fields

Let the (spacelike) initial data hypersurface S be given by the equation x0 = 0,
define

ν :=
1√
−g00

, (1.7.77)

so that the future directed unit normal N to S has covariant components

Nµdx
µ = −νdx0 .

When constructing initial data involving Maxwell equations, one needs to keep
in mind that the Maxwell equations

∇µFµν = 4πJνM , ∇µ ? Fµν = 0 , (1.7.78)
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where ?Fµν := 1
2ε
µνρσFρσ, and where JµM denotes the charge-current four-vector

density, imply constraints equations on the electric and magnetic fields Ei and
Bi (compare (1.6.2), p. 23):

Ei∂i := NµF
iµ∂i = νF 0i∂i , Bi∂i := ν ? F i0∂i . (1.7.79)

Indeed, we then have

DiE
i = 4πνJ0

M , DiB
i = 0 . (1.7.80)

Since DiB
i = ∂i(

√
det gk`B

i)/
√

det gk`, the second equation above is immedi-
ately covariant under conformal rescalings of the metric if Bi is taken of the
form

Bi := φ−
2n
n−2 B̃i , (1.7.81)

where B̃i is divergence-free in the metric g̃. Likewise the first equation in
(1.7.80) will be conformally covariant if

Ei := φ−
2n
n−2 Ẽi , νJ iM := φ−

2n
n−2 ν̃J̃ iM , D̃iẼ

i = 4πν̃J̃0
M . (1.7.82)

The energy-density of the Maxwell fields is (keeping in mind that n = 3 here)

µ :=
1

8π

(
gijE

iEj + gijB
iBj
)

= ϕ−8 1

8π

(
g̃ijẼ

iẼj + g̃ijB̃
iB̃j
)

︸ ︷︷ ︸
=:µ̃

. (1.7.83)

One recovers the York scaling (1.7.74). One similarly checks the York-scaling
property for the energy-momentum three-vector J i.

1.8 Non-compact initial data sets: an overview

So far we have been considering initial data sets on compact manifolds. How-
ever, there are noncompact classes of data which are of interest, and in this
section we will review them.

Recall that a vacuum initial data set (M, g,K) is a triple consisting of
an n-dimensional manifold M , a Riemannian metric on g, and a symmetric
two-covariant tensor K. One moreover requires that the vacuum constraint
equations hold:

R(g) = 2Λ + |K|2g − (trgK)2 , (1.8.1)

DjK
j
k −DkK

j
j = 0 . (1.8.2)

The reader will note that we have allowed for a non-zero cosmological con-
stant Λ ∈ R. The hypothesis that Λ = 0 is adequate when describing isolated
gravitating systems such as the solar system; Λ > 0 seems to be needed in
cosmology in view of the observations of the rate of change of the Hubble con-
stant [142, 155]; finally, a negative cosmological constant appears naturally in
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many models of theoretical physics, such as string theory or supergravity. For
those reasons it is of interest to consider all possible values of Λ.

A CMC initial data set is one where trgK is constant; data are called max-
imal if trgK is identically zero. A time-symmetric data set if one where K
vanishes identically. In this case (1.8.1)-(1.8.2) reduces to the requirement that
the scalar curvature of g be constant:

R(g) = 2Λ .

1.8.1 Non-compact manifolds with constant positive scalar cur-
vature

The topological classification of compact three-manifolds with positive scalar
curvature generalises to the following non-compact setting: One says that a Rie-
mannian metric g has bounded geometry if g has bounded sectional curvatures
and injectivity radius bounded away from zero. Using Ricci flow (the short-time
existence of which is guaranteed in the setting by the work of Shi [149]), one
has [26]:

Theorem 1.8.1 Let S be a connected, orientable three-manifold which car-
ries a complete Riemannian metric of bounded geometry and uniformly positive
scalar curvature. Then there is a finite collection F of spherical manifolds such
that S is an (infinite) connected sum of copies of S1 × S2 and members of F .

The cylinders (R×Sn−1, dx2 + g̊n−1) provide examples of non-compact man-
ifolds with positive scalar curvature. The underlying manifold can be viewed as
Sn from which the north and south poles have been removed. In Theorem 1.8.1
they are viewed as an infinite connected sum of S1 × S2.

Completing the initial data (R× S2, dx2 + g̊2) with a suitable extrinsic curvature
tensor, when Λ = 0 the corresponding evolution leads to the interior Schwarzschild
metric: for t < 2m

g = − 1
2m
t − 1

dt2 +

(
2m

t
− 1

)
dx2 + t2g̊2 . (1.8.3)

When Λ > 0, vanishing extrinsic curvature leads to the Nariai metrics [128]:

g =
1

Λ

(
−dt2 + cosh2 t dρ2 + g̊2

)
(1.8.4)

(compare [29]).

Another class of positive scalar constant curvature metrics on S1 × Sn−1

is provided by the Delaunay metrics, when the coordinate y of (1.7.63) is not
periodically identified, but runs over R.

Example 1.8.2 The Delaunay metrics provide an example of complete spherically
symmetric metrics with positive scalar curvature. Large classes of metrics with the
last set of properties can be constructed as follows: Recall that (see (B.1.14), p. 112,
with g and g̃ there interchanged)

gij = ϕ
4

n−2 g̃ij =⇒ R = ϕ−
4

n−2

(
R̃− 4(n− 1)

(n− 2)ϕ
∆g̃ϕ

)
. (1.8.5)
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So if g̃ is the flat Euclidean metric δ, then g will have non-negative scalar curvature
if and only if

∆δϕ ≤ 0 .

Smooth pherically symmetric solutions of this inequality which are regular at the
origin and which asymptote to one at infinity can be obtained by setting

ϕ = 1 +
1

rn−2

∫ r

0

f(s)sn−1ds+

∫ ∞
r

f(t)tdt , (1.8.6)

where f is any smooth positive function such that
∫∞

0
f(r)rn−1dr is finite. (The

solution will be be asymptotically flat in the usual sense if, e.g., f is compactly
supported.) Indeed, we have

ϕ′ = − (n− 2)

rn−1

∫ r

0

f(s)sn−1ds , (1.8.7)

hence
∆δϕ = r−(n−1)∂r(r

n−1∂rϕ) = −(n− 2)f ,

and so the sign of the scalar curvature of ϕ4/(n−2)δ is determined by that of −f .
In the region where f vanishes we have R = 0, which provides vacuum regions.

Connected regions of non-zero f can be thought of as a central star, or shells of
matter.

It is interesting to enquire about existence of spherically symmetric minimal
surfaces for such metrics. Now a strict definition of a minimal surface is the re-
quirement of minimum area amongst nearby competing surfaces, but any critical
point of the area functional is also often called “minimal”, and we will follow this
practice.

In the case under consideration, the area of spheres of constant radius is pro-
portional to (r2ϕ4/(n−2))(n−1)/2, and so the area will have vanishing derivative with
respect to r if and only if

(rϕ2/(n−2))′ = 0 ⇐⇒ − 2rϕ′

(n− 2)
= ϕ

⇐⇒ 1

rn−2

∫ r

0

f(s)sn−1ds︸ ︷︷ ︸
=:h(r)

= 1 +

∫ ∞
r

f(t)tdt︸ ︷︷ ︸
=:g(r)

. (1.8.8)

This formula can be used to construct solutions containing minimal spheres as
follows: Suppose that the function f of (1.8.6) is constant, say f = f0 > 0, on an
interval [0, r1]. Then h(r) = f0r

2/n increases while g(r) = g(0)− f0r
2/2 decreases,

so equality will be achieved precisely once somewhere before r1 if

f0r
2
1

n
> 1 +

∫ ∞
r1

f(r)rdr . (1.8.9)

The value of r ∈ [0, r1] at which the equality in (1.8.8) holds provides our first
“minimal” surface (which actually locally maximizes area). We then let f drop
smoothly to zero on [r1, r2], for some r2 > r1, and keep f equal to zero on [r2, r3),
with r3 possibly equal to ∞. On [r1, r2] the function h continues to increase while
the function g continues to decrease, so there cannot be any further minimal surfaces
in this interval. On [r2, r3) the function

h(r) = r−n−2

∫ r2

0

f(s)sn−1ds
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decreases as r−(n−2) while g(r) remains constant, so equality in (1.8.8) will be
attained before r3 if

r−n−2
3

∫ r2

0

f(s)sn−1ds < 1 +

∫ ∞
r3

f(r)r dr . (1.8.10)

Note that the choice of r3 does not affect (1.8.9) insofar as f vanishes on [r2, r3).
In particular if we choose r3 = ∞, we can first choose any central value f0,

and then choose r1 so that f0r
2
1/n > 2. Choosing the intermediate region [r1, r2]

small enough so that the integral at the right-hand-side is smaller than one, it
follows from (1.8.9) that the resulting metric will have precise one locally maximal
sphere somewhere before r1. For r > r2 the metric is the (asymptotically flat)
space-Schwarzschild metric with a second minimal sphere somewhere in [r2,∞).

1.8.2 Asymptotically flat manifolds

One of the most widely studied class of Lorentzian manifolds are the asymptot-
ically flat space-times which model isolated gravitational systems. Now, there
exist several ways of defining asymptotic flatness, all of them roughly equivalent
in vacuum. In this section we describe the Cauchy data point of view, which
appears to be the least restrictive in any case.

So, a space-time (M , g) will be said to possess an asymptotically flat end if
M contains a spacelike hypersurface Mext diffeomorphic to Rn \ B(R), where
B(R) is a coordinate ball of radius R. An end comes thus equipped with
a set of Euclidean coordinates {xi, i = 1, . . . , n}, and one sets r = |x| :=(∑n

i=1(xi)2
)1/2

. One then assumes that there exists a constant α > 0 such that,
in local coordinates on Mext obtained from Rn \ B(R), the metric g induced
by g on Mext, and the second fundamental form K of Mext, satisfy the fall-off
conditions, for some k > 1,

gij − δij = Ok(r
−α) , Kij = Ok−1(r−1−α) , (1.8.11)

where we write f = Ok(r
β) if f satisfies

∂k1 . . . ∂k`f = O(rβ−`) , 0 ≤ ` ≤ k . (1.8.12)

The PDE aspects of the problem require furthermore (g,K) to lie in certain
weighted Hölder or Sobolev spaces defined on S . More precisely, the above
decay conditions should be implemented by conditions on the Hölder continuity
of the fields; alternatively, the above equations should be understood in an
integral sense. The constraint equations can be conveniently treated in both
Hölder and Sobolev spaces, but one should keep in mind that L2-type Sobolev
spaces are better suited for solving the evolution equations.

The analysis of elliptic operators such as the Laplacian on weighted functional
spaces was initiated by Nirenberg and Walker [129]; see also [13, 36, 109–112, 122–
124, 131] as well as [35].

The conformal method works again very well for asymptotically flat ini-
tial data sets. The approach is very similar to the one for compact manifolds,
with two important distinctions: on non-compact manifolds the embeddings
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Hk ⊂ Hm and Ck,α ⊂ Cm,α, for k ≥ m, are not compact anymore. Further-
more, to obtain good mapping properties for elliptic operators one needs to
introduce weighted Sobolev or Hölder spaces. The reader is referred to the
original references for details [33, 35, 36, 42, 43, 45, 116, 117].

CMC initial data can only be asymptotically flat if Λ = τ = 0. The Lich-
nerowicz equation simplifies then to

∆g̃φ−
n− 2

4(n− 1)
R̃φ = −σ2φ(2−3n)/(n−2) , (1.8.13)

where

σ2 :=
n− 2

4(n− 1)
|L̃|2g̃ . (1.8.14)

The treatment of TT-tensors is essentially identical to that on compact man-
ifolds. In fact, the analysis is somewhat simpler because there are no conformal
Killing vectors which decay to zero as one recedes to infinity, so the conformal
vector Laplacian has no kernel on weighted Sobolev spaces with decay.

Concerning the Lichnerowicz equation (1.8.13), suppose that there exists
a positive solution of this equation, then the conformally rescaled metric g =
φ4/(n−2)g̃ has non-negative scalar curvature R = |L|2g, with L being an ap-

propriate rescaling of L̃. Thus, a necessary condition for existence of positive
solutions of (1.8.13) is that there exist metrics of non-negative scalar curvature
in the conformal class [g̃] of g̃. A precise conformally invariant criterion for this
has been proposed in [33] but, as emphasised e.g. in [73, 116], the statement
in [33] is not quite correct. In [73, 116] a corrected version has been provided,
as follows:

Recall that the Yamabe number of a metric is defined by the equation

Y (M, g) = inf
u∈C∞b , u 6≡0

∫
M (|Du|2 + n−2

4(n−1)Ru
2)

(
∫
M u2n/(n−2))(n−2)/n

. (1.8.15)

where C∞b denotes the space of compactly supported smooth functions. As
discussed in Section 1.7.1, Y (M, g) depends only upon the conformal class of
g. For asymptotically flat manifolds, there exists a conformal rescaling so that
R̃ is non-negative if and only if Y (M, g) > 0 [33, 73, 116].

Suppose, then, that we can perform the conformal rescaling that makes
R̃ ≥ 0. Setting

φ = 1 + u ,

the requirement that g has vanishing scalar curvature translates into an equa-
tion for u:

∆g̃u−
n− 2

4(n− 1)
R̃u = − n− 2

4(n− 1)
R̃ . (1.8.16)

Because R̃ is non-negative now, there is no difficulty in finding a solution u
decaying to zero at infinity, with suitable weighted regularity. Note that u is
strictly positive by the maximum principle, in particular 1 + u has no zeros
and asymptotes to one. Replacing g̃ by (1 + u)4/(n−2)g̃, the new g̃ is again
asymptotically flat, and (1.8.13) simplifies to

∆g̃φ = −σ2φ(2−3n)/(n−2) . (1.8.17)
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Since
0 = ∆g̃1 ≥ −σ2 = −σ21(2−3n)/(n−2) ,

the constant function
ϕ− := 1

provides a subsolution which asymptotes to one. To obtain a supersolution we
use a variation of Hebey’s trick, as used in our treatment of compact manifolds:
Let v be a solution approaching zero in the asymptotically flat regions of

∆g̃v = −σ2 . (1.8.18)

Then v is strictly positive by the maximum principle. Let φ+ = 1 + v, then

∆g̃φ+ = −σ2 ≤ −σ2(1 + v)(2−3n)/(n−2) = −σ2φ
(2−3n)/(n−2)
+ , (1.8.19)

so φ+ is indeed a supersolution. Since φ+ := 1 + v ≥ 1 =: φ−, we can use the
monotone iteration scheme to obtain a solution. Note that φ− and φ+ both
asymptote to one, so the solution also will.

This provides a complete description of vacuum, asymptotically flat, CMC
initial data.

1.9 Non-CMC data

One can also consider the conformal method without assuming CMC data. As
before, the free conformal data consist of a manifold M , a Riemannian metric g̃
on M , a trace-free symmetric tensor σ̃, and a mean curvature function τ . The
fields (g,K) defined as

g = φq g̃ , where q =
4

n− 2
, (1.9.1)

K = φ−2(σ̃ + C̃(Y )) +
τ

n
φqg , (1.9.2)

where φ is positive, will then solve the constraint equations with matter energy-
momentum density (µ, J) if and only if the function φ and the vector field Y
solve the equations

divg̃(C̃(Y ) + σ̃) =
n− 1

n
φq+2D̃τ + 8πφqJ J̃ , (1.9.3)

∆g̃φ−
1

q(n− 1)
R(g̃)φ+

1

q(n− 1)
|σ̃ + C̃(Y )|2g̃φ−q−3 − 1

qn
τ2φq+1 = 16πφqµ µ̃ .

(1.9.4)
Here qJ and qµ are exponents which can be chosen in a manner which is con-
venient for the problem at hand. A possible choice is obained by inserting the
York scaling given in (1.7.73)-(1.7.74) into (1.7.71)-(1.7.72); this is convenient
e.g. for the Einstein-Maxwell constraints in dimension n = 3. Finally, the sym-
bol D̃ denotes the covariant derivative of g̃, and C̃(Y ) is the conformal Killing
operator of g̃:

C̃(Y )ab = D̃aYb + D̃bYa −
2

n
g̃abD̃cY

c . (1.9.5)
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When dτ 6≡ 0, the vector constraint equation does not decouple from the scalar
one, and one needs to find simultaneously the solution (φ, Y ) to both equations
above.

One can invoke the implicit function theorem to construct solutions of the
above when τ is bounded away from zero and dτ is sufficiently small, near a
solution at which the linearized operator is an isomorphism. Other techniques
have also been used in this context in [3, 38, 93, 94]. A non-existence theorem
for a class of near-CMC conformal data has been established in [95].

The first general result without assuming small gradient is due to Holst,
Nagy, and Tsogtgerel [85, 86] who assumed non-vanishing matter source, µ̃ 6≡ 0.
Maxwell [118] has extended their argument to include the vacuum case, leading
to:

Theorem 1.9.1 (Holst, Nagy, Tsogtgerel [85, 86], Maxwell [118]) Let (M, g̃ab) be
a three dimensional, smooth, compact Riemannian manifold of positive Yamabe
type without conformal Killing vectors, and let σ̃ij be a symmetric transverse
traceless tensorfield. If the seed tensor σ̃ and the matter sources |J̃ |g̃ ≤ µ̃ are
sufficiently small, then there exists a scalar field φ > 0 and a vector field Y
solving the system

∆g̃φ− 1
8R̃φ = −1

8 |σ̃|
2
g̃φ
−7 + 1

12τ
2φ5 − 2πµ̃φ−3 ,

D̃i(D̃
iY j + D̃jY i − 2

3D̃kY
kg̃ij) = 8πJ̃ j + 2

3φ
6D̃jτ , (1.9.6)

and hence providing a solution

(gij ,K
ij) = (φ4g̃ij , φ

−10(σ̃ij + D̃iY j + D̃jY i − 2

3
D̃kY

kg̃ij) +
τ

3
φ−4g̃ij)

of the constraint equations in vacuum (µ = 0 = J) or with sources

(µ, J i) = (φ−
2(n+1)
n−2 µ̃, φ−

2(n+2)
n−2 J̃ i)

(compare (1.7.74) and (1.7.73), p. 48).

The reader is referred to [118] for further general statements concerning the
problem at hand.

1.10 Gluing techniques

The gluing techniques can be regarded as a singular perturbation method. They
are used to produce new solutions by gluing together old ones. The main
usefulness of the technique in general relativity lies in the fact that, away from
the small set about which one fuses the two solutions, the new solution is
identical, to the original ones. This gives one control on the physical properties
of the glued initial data. Furthermore, because of the finite speed of propagation
of signals, one has information of the global behaviour in time of the resulting
solutions, at least in some regions.
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The linearized constraint equations and KIDs

The starting point of gluing constructions for the constraint equations is the
linearization of these equations about a given solution (M, g,K). We let P∗(g,K)

denote the L2 adjoint of the linearization of the constraint equations at this
solution. Viewed as an operator acting on a scalar function N and a vector
field Y , P∗(g,K) takes the explicit form [49]

P∗(g,K)(N,Y ) =


2(D(iYj) −DlYlgij −KijN + trK Ngij)

DlYlKij − 2K l
(iDj)Yl +Kq

lDqY
lgij

−∆Ngij +DiDjN + (DpKlpgij −DlKij)Y
l

−NRic (g)ij + 2NK l
iKjl − 2N(tr K)Kij

 . (1.10.1)

Now this operator does not, on first inspection, appear to be very “user friendly”.
However, our immediate concern is solely with its kernel, and the pairs (N,Y )
which lie in its kernel have a very straightforward geometric and physical char-
acterization. In particular, let Ω be an open subset of M . By definition, the
set of “KIDs” on Ω, denoted K (Ω), is the set of all solutions of the equation

P∗(γ,K)|Ω(N,Y ) = 0 . (1.10.2)

Such a solution (N,Y ), if nontrivial, generates a space-time Killing vector field
in the domain of dependence of (Ω, g|Ω,K|Ω) [126].

From a geometric point of view one expects that solutions with symmetries
should be rare. This was made rigorous in [24], where it is shown that the
generic behaviour among solutions of the constraint equations is the absence
of KIDs on any open set. On the other hand, one should note that essentially
every explicit solution has symmetries. In particular, both the flat initial data
for Minkowski space, and the initial data representing the constant time slices
of Schwarzschild have KIDs.

Corvino’s result

As we have already pointed out, the Einstein constraint equations form an un-
derdetermined system of equations, and as such, it is unreasonable to expect
that they (or their linearizations) should satisfy the unique continuation prop-
erty. In 2000, Corvino established a gluing result for asymptotically flat metrics
with zero scalar curvature which dramatically illustrated this point [56]. In the
special case when one considers initial data with vanishing second fundamental
form K ≡ 0, the momentum constraint equation becomes trivial and the Hamil-
tonian constraint equation reduces to simply R(g) = 0, i.e. a scalar flat metric.
Such initial data sets are referred to as “time-symmetric” because the space-
time obtained by evolving them possesses a time-reversing isometry which leaves
the initial data surface fixed. Beyond Euclidean space itself, the constant time
slices of the Schwarzschild space-time form the most basic examples of asymp-
totically flat, scalar flat manifolds. One long-standing open problem [16, 147] in
the field had been whether there exist scalar flat metrics on Rn which are not
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globally spherically symmetric but which are spherically symmetric in a neigh-
borhood of infinity and hence, by Birkhoff’s theorem, Schwarzschild there.

Corvino resolved this by showing that he could deform any asymptotically
flat, scalar flat metric to one which is exactly Schwarzschild outside of a compact
set.

Theorem 1.10.1 ([56]) Let (M, g) be a smooth Riemannian manifold with
zero scalar curvature containing an asymptotically flat end Sext = {|x| > r >
0}. Then there is a R > r and a smooth metric ḡ on M with zero scalar
curvature such that ḡ is equal to g in M \Sext and ḡ coincides on {|x| > R}
with the metric induced on a standard time-symmetric slice in the Schwarzschild
solution. Moreover the mass of ḡ can be made arbitrarily close to that of g by
choosing R sufficiently large.

Underlying this result is a gluing construction where the deformation has
compact support. The ability to do this is a reflection of the underdetermined
nature of the constraint equations. In this setting, since K ≡ 0, the operator
takes a much simpler form, as a two-covariant tensor valued operator acting on
a scalar function u by

P∗u = −(∆gu)g + Hess gu− uRic(g) .

An elementary illustration of how an underdetermined system can lead to com-
pactly supported solutions is given by the construction of compactly supported
transverse-traceless tensors on R3 in Appendix B of [57] (see also [22, 60]).

An additional challenge in proving Theorem 1.10.1 is the presence of KIDs
on the standard slice of the Schwarzschild solution. If the original metric had
ADM mass m(g), a naive guess could be that the best fitting Schwarzschild
solution would be the one with precisely the same mass. However the mass,
and the coordinates of the center of mass, are in one-to-one correspondence
with obstructions arising from KIDs. To compensate for this co-kernel in the
linearized problem, Corvino uses these (n+1 in dimension n) degrees of freedom
as effective parameters in the geometric construction. The final solution can be
chosen to have its ADM mass arbitrarily close to the initial one.

Corvino’s technique has been applied and extended in a number of impor-
tant ways. The “asymptotic simplicity” model for isolated gravitational sys-
tems proposed by Penrose [133] has been very influential. This model assumes
existence of smooth conformal completions to study global properties of asymp-
totically flat space-times. The question of existence of such vacuum space-times
was open until Chruściel and Delay [48], and subsequently Corvino [57], used
this type of gluing construction to demonstrate the existence of infinite dimen-
sional families of vacuum initial data sets which evolve to asymptotically simple
space-times. The extension of the gluing method to non-time-symmetric data
was done in [49, 58]. This allowed for the construction of space-times which are
exactly Kerr outside of a compact set, as well as showing that one can specify
other types of useful asymptotic behavior.
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Conformal gluing

In [91], Isenberg, Mazzeo and Pollack developed a gluing construction for initial
data sets satisfying certain natural non-degeneracy assumptions. The perspec-
tive taken there was to work within the conformal method, and thereby establish
a gluing theorem for solutions of the determined system of PDEs given by (1.9.3)
and (1.9.4). This was initially done only within the setting of constant mean
curvature initial data sets and in dimension n = 3 (the method was extended to
all higher dimensions in [89]). The construction of [91] allowed one to combine
initial data sets by taking a connected sum of their underlying manifolds, to
add wormholes (by performing codimension 3 surgery on the underlying, con-
nected, 3-manifold) to a given initial data set, and to replace arbitrary small
neighborhoods of points in an initial data set with asymptotically hyperbolic
ends.

In [92] this gluing construction was extended to only require that the mean
curvature be constant in a small neighborhood of the point about which one
wanted to perform a connected sum. This enabled the authors to show that one
can replace an arbitrarily small neighborhood of a generic point in any initial
data set with an asymptotically flat end. As we have seen that CMC solutions
of the vacuum constraint equations exist on any compact manifold, this leads
to the following result, which asserts that there are no topological obstructions
to asymptotically flat solutions of the constraint equations:

Theorem 1.10.2 ([92]) Let M be any closed n-dimensional manifold, and p ∈
M . Then M \ {p} admits an asymptotically flat initial data set satisfying the
vacuum constraint equations.

Initial data engineering

The gluing constructions of [91] and [92] are performed using a determined
elliptic system provided by the conformal method, which necessarily leads to a
global deformation of the initial data set, small away from the gluing site. Now,
the ability of the Corvino gluing technique to establish compactly supported
deformations invited the question of whether these conformal gluings could be
localized. This was answered in the affirmative in [49] for CMC initial data
under the additional, generically satisfied [24], assumption that there are no
KIDs in a neighborhood of the gluing site.

In [52, 53], this was substantially improved upon by combining the gluing
construction of [91] together with the Corvino gluing technique of [48, 56], to
obtain a localized gluing construction in which the only assumption is the ab-
sence of KIDs near points. For a given n-manifold M (which may or may not be
connected) and two points pa ∈M , a = 1, 2, we let M̃ denote the manifold ob-
tained by replacing small geodesic balls around these points by a neck Sn−1×I.
When M is connected this corresponds to performing codimension n surgery
on the manifold. When the points pa lie in different connected components of
M , this corresponds to taking the connected sum of those components.

Theorem 1.10.1 ([52, 53]) Let (M, g,K) be a smooth vacuum initial data set,
with M not necessarily connected, and consider two open sets Ωa ⊂M , a = 1, 2,
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with compact closure and smooth boundary such that

the set of KIDs, K (Ωa), is trivial.

Then for all pa ∈ Ωa, ε > 0, and k ∈ N there exists a smooth vacuum initial
data set (M̃, g(ε),K(ε)) on the glued manifold M̃ such that (g(ε),K(ε)) is ε-
close to (g,K) in a Ck × Ck topology away from B(p1, ε) ∪B(p2, ε). Moreover
(g(ε),K(ε)) coincides with (g,K) away from Ω1 ∪ Ω2.

This result is sharp in the following sense: first note that, by the positive
mass theorem, initial data for Minkowski space-time cannot locally be glued to
anything which is non-singular and vacuum. This meshes with the fact that
for Minkowskian initial data, we have K (Ω) 6= {0} for any open set Ω. Next,
recall that by the results in [24], the no-KID hypothesis in Theorem 1.10.1 is
generically satisfied. Thus, the result can be interpreted as the statement that
for generic vacuum initial data sets the local gluing can be performed around
arbitrarily chosen points pa. In particular the collection of initial data with
generic regions Ωa satisfying the hypotheses of Theorem 1.10.1 is not empty.

The proof of Theorem 1.10.1 is a mixture of gluing techniques developed
in [89, 91] and those of [49, 56, 58]. In fact, the proof proceeds initially via
a generalization of the analysis in [91] to compact manifolds with boundary.
In order to have CMC initial data near the gluing points, which the analysis
based on [91] requires, one makes use of the work of Bartnik [14] on the plateau
problem for prescribed mean curvature spacelike hypersurfaces in a Lorentzian
manifold.

Arguments in the spirit of those of the proof of Theorem 1.10.1 lead to the
construction of many-body initial data [46, 47]: starting from initial data for
N gravitating isolated systems, one can construct a new initial data set which
comprises isometrically compact subsets of each of the original systems, as large
as desired, in a distant configuration.

An application of the gluing techniques concerns the question of the ex-
istence of CMC slices in space-times with compact Cauchy surfaces. In [15],
Bartnik showed that there exist maximally extended, globally hyperbolic solu-
tions of the Einstein equations with dust which admit no CMC slices. Later,
Eardley and Witt (unpublished) proposed a scheme for showing that similar
vacuum solutions exist, but their argument was incomplete. It turns out that
these ideas can be implemented using Theorem 1.10.1, which leads to:

Corollary 1.10.2 [52, 53] There exist maximal globally hyperbolic vacuum space-
times with compact Cauchy surfaces which contain no compact spacelike hyper-
surfaces with constant mean curvature.

Compact Cauchy surfaces with constant mean curvature are useful objects,
as the existence of one such surface gives rise to a unique foliation by such
surfaces [30], and hence a canonical choice of time function (often referred to
as CMC or York time). Foliations by CMC Cauchy surfaces have also been
extensively used in numerical analysis to explore the nature of cosmological
singularities. Thus the demonstration that there exist space-times with no
such surfaces has a negative impact on such studies.
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One natural question is the extent to which space-times with no CMC slices
are common among solutions to the vacuum Einstein equations with a fixed
spatial topology. It is expected that the examples constructed in [52, 53] are
not isolated. In general, there is a great deal of flexibility (in the way of free
parameters) in the local gluing construction. This can be used to produce one
parameter families of distinct sets of vacuum initial data which lead to space-
times as in Corollary 1.10.2. What is less obvious is how to prove that all
members of these families give rise to distinct maximally extended, globally
hyperbolic vacuum space-times.

A deeper question is whether a sequence of space-times which admit con-
stant mean curvature Cauchy surfaces may converge, in a strong topology, to
one which admits no such Cauchy surface. (See [12, 15, 77] for general criteria
leading to the existence of CMC Cauchy surfaces.)

Non-zero cosmological constant

Gluing constructions have also been carried out with a non-zero cosmological
constant [51, 54, 55]. One aim is to construct space-times which coincide, in the
asymptotic region, with the corresponding black hole models. In such space-
times one has complete control of the geometry in the domain of dependence
of the asymptotic region, described there by the Kottler metrics (??). For
time-symmetric slices of these space-times, the constraint equations reduce to
the equation for constant scalar curvature R = 2Λ. Gluing constructions have
been previously carried out in this context, especially in the case of Λ > 0, but
in [51, 54, 55] the emphasis is on gluing with compact support, in the spirit of
Corvino’s thesis and its extensions already discussed.

The time-symmetric slices of the Λ > 0 Kottler space-times provide “Delau-
nay” metrics (see [55] and references therein), and the main result of [54, 55] is
the construction of large families of metrics with exactly Delaunay ends. When
Λ < 0 the focus is on asymptotically hyperbolic metrics with constant negative
scalar curvature. With hindsight, within the family of Kottler metrics with
Λ ∈ R (with Λ = 0 corresponding to the Schwarzschild metric), the gluing in
the Λ > 0 setting is technically easiest, while that with Λ < 0 is the most
difficult. This is due to the fact that for Λ > 0 one deals with one linearized
operator with a one-dimensional kernel; in the case Λ = 0 the kernel is (n+ 1)–
dimensional; while for Λ < 0 one needs to consider a one-parameter family of
operators with (n+ 1)–dimensional kernels.

1.11 Other hyperbolic reductions

The wave-coordinates approach of Choquet-Bruhat, presented above, is the first
hyperbolic reduction discovered for the Einstein equations. It has been given
new life by the Lindblad-Rodnianski stability theorem. However, one should
keep in mind the existence of several other such reductions.

An example is given by the symmetric-hyperbolic first order system of
Baumgarte, Shapiro, Shibata and Nakamura [21, 143, 150], known as the BSSN
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system, widely used in numerical general relativity. Another noteworthy exam-
ple is the elliptic-hyperbolic system of [7], in which the elliptic character of some
of the equations provides increased control of the solution. A notorious problem
in numerical simulations is the lack of constraint preservation, see [84, 132] and
references therein for attempts to improve the situation. The reader is referred
to [72, 76] for a review of many other possibilities.

1.12 The characteristic Cauchy problem

Another important systematic construction of solutions of the vacuum Einstein
equations proceeds via a characteristic Cauchy problem. In this case the initial
data are prescribed on Cauchy hypersurfaces which are allowed to be piecewise
null. This problem has been considerably less studied than the spacelike one
described above. We will not go into any details here; see [27, 31, 32, 37, 44, 62,
141] for further information.

1.13 Initial-boundary value problems

Numerical simulations necessarily take place on a finite grid, which leads to the
need of considering initial-boundary value problems. In general relativity those
are considerably more complicated than the Cauchy problem, and much remains
to be understood. In pioneering work, Friedrich and Nagy [74] constructed a
system of equations, equivalent to Einstein’s, for a set of fields that includes
some components of the Weyl tensor, and proved well-posedness of an initial-
boundary value problem for those equations. It would seem that the recent
work by Kreiss et al. [104] might lead to a simpler formulation of the problem
at hand.
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Appendix A

Introduction to
pseudo-Riemannian geometry

A.1 Manifolds

Definition A.1.1 An n–dimensional manifold is a set M equipped with the
following:

1. topology: a “connected Hausdorff paracompact topological space” (think
of nicely looking subsets of R1+n, like spheres, hyperboloids, and such),
together with

2. local charts: a collection of coordinate patches (U , xi) covering M , where
U is an open subset of M , with the functions xi : U → Rn being contin-
uous. One further requires that the maps

M ⊃ U 3 p 7→ (x1(p), . . . , xn(p)) ∈ V ⊂ Rn

are homeomorphisms.

3. compatibility: given two overlapping coordinate patches, (U , xi) and (Ũ , x̃i),
with corresponding sets V , Ṽ ⊂ Rn, the maps x̃j 7→ xi(x̃j) are smooth
diffeomorphisms wherever defined: this means that they are bijections dif-
ferentiable as many times as one wishes, with

det

[
∂xi

∂x̃j

]
nowhere vanishing .

Definition of differentiability: A function on M is smooth if it is smooth when
expressed in terms of local coordinates. Similarly for tensors.

Examples:
1. Rn with the usual topology, one single global coordinate patch.
2. A sphere: use stereographic projection to obtain two overlapping coor-

dinate systems (or use spherical angles, but then one must avoid borderline
angles, so they don’t cover the whole manifold!).

65
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3. We will use several coordinate patches (in fact, five), to describe the
Schwarzschild black hole, though one spherical coordinate system would suffice.

4. Let f : Rn → R, and define N := f−1(0). If ∇f has no zeros on
N , then every connected component of N is a smooth (n − 1)–dimensional
manifold. This construction leads to a plethora of examples. For example, if
f =

√
(x1)2 + . . .+ (xn)2 −R, with R > 0, then N is a sphere of radius R.

In this context a useful example is provided by the function f = t2 − x2 on
R2: its zero-level-set is the light-cone t = ±x, which is a manifold except at the
origin; note that ∇f = 0 there, which shows that the criterion is sharp.

A.2 Scalar functions

Let M be an n-dimensional manifold. Since manifolds are defined using co-
ordinate charts, we need to understand how things behave under coordinate
changes. For instance, under a change of coordinates xi → yj(xi), to a function
f(x) we can associate a new function f̄(y), using the rule

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) .

In general relativity it is a common abuse of notation to write the same symbol f
for what we wrote f̄ , when we think that this is the same function but expressed
in a different coordinate system. We then say that a real- or complex-valued f
is a scalar function when, under a change of coordinates x→ y(x), the function
f transforms as f → f(x(y)).

In this section, to make things clearer, we will write f̄ for f(x(y)) even when
f is a scalar, but this will almost never be done in the remainder of these notes.
For example we will systematically use the same symbol gµν for the metric
components, whatever the coordinate system used.

A.3 Vector fields

Physicists often think of vector fields in terms of coordinate systems: a vector
field X is an object which in a coordinate system {xi} is represented by a
collection of functions Xi. In a new coordinate system {yj} the field X is
represented by a new set of functions:

Xi(x)→ Xj(y) := Xj(x(y))
∂yi

∂xj
(x(y)) . (A.3.1)

(The summation convention is used throughout, so that the index j has to be
summed over.)

The notion of a vector field finds its roots in the notion of the tangent to a
curve, say s→ γ(s). If we use local coordinates to write γ(s) as (γ1(s), γ2(s), . . . , γn(s)),
the tangent to that curve at the point γ(s) is defined as the set of numbers

(γ̇1(s), γ̇2(s), . . . , γ̇n(s)) .
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Consider, then, a curve γ(s) given in a coordinate system xi and let us perform
a change of coordinates xi → yj(xi). In the new coordinates yj the curve γ is
represented by the functions yj(γi(s)), with new tangent

dyj

ds
(y(γ(s))) =

∂yj

∂xi
(γ(s))γ̇i(s) .

This motivates (A.3.1).

In modern differential geometry a different approach is taken: one identifies
vector fields with homogeneous first order differential operators acting on real
valued functions f : M → R. In local coordinates {xi} a vector field X will be
written as Xi∂i, where the Xi’s are the “physicists’s functions” just mentioned.
This means that the action of X on functions is given by the formula

X(f) := Xi∂if (A.3.2)

(recall that ∂i is the partial derivative with respect to the coordinate xi). Con-
versely, given some abstract first order homogeneous derivative operator X, the
(perhaps locally defined) functions Xi in (A.3.2) can be found by acting on the
coordinate functions:

X(xi) = Xi . (A.3.3)

One justification for the differential operator approach is the fact that the
tangent γ̇ to a curve γ can be calculated — in a way independent of the coor-
dinate system {xi} chosen to represent γ — using the equation

γ̇(f) :=
d(f ◦ γ)

dt
.

Indeed, if γ is represented as γ(t) = {xi = γi(t)} within a coordinate patch,
then we have

d(f ◦ γ)(t)

dt
=
d(f(γ(t)))

dt
=
dγi(t)

dt
(∂if)(γ(t)) ,

recovering the previous coordinate formula γ̇ = (dγi/dt).

An even better justification is that the transformation rule (A.3.1) becomes
implicit in the formalism. Indeed, consider a (scalar) function f , so that the
differential operator X acts on f by differentiation:

X(f)(x) :=
∑
i

Xi∂f(x)

∂xi
. (A.3.4)

If we make a coordinate change so that

xj = xj(yk) ⇐⇒ yk = yk(xj) ,

keeping in mind that

f̄(y) = f(x(y)) ⇐⇒ f(x) = f̄(y(x)) ,
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then

X(f)(x) :=
∑
i

Xi(x)
∂f(x)

∂xi

=
∑
i

Xi(x)
∂f̄(y(x))

∂xi

=
∑
i,k

Xi(x)
∂f̄(y(x))

∂yk
∂yk

∂xi
(x)

=
∑
k

X̄k(y(x))
∂f̄(y(x))

∂yk

=

(∑
k

X̄k ∂f̄

∂yk

)
(y(x)) ,

with X̄k given by the right-hand-side of (A.3.1). So

X(f) is a scalar iff the coefficients Xi satisfy the transformation law of a vector.

Exercice A.3.1 Check that this is a necessary and sufficient condition.

One often uses the middle formula in the above calculation in the form

∂

∂xi
=
∂yk

∂xi
∂

∂yk
. (A.3.5)

Note that the tangent to the curve s→ (s, x2, x3, . . . xn), where (x2, x3, . . . xn)
are constants, is identified with the differential operator

∂1 ≡
∂

∂x1
.

Similarly the tangent to the curve s → (x1, s, x3, . . . xn), where (x1, x3, . . . xn)
are constants, is identified with

∂2 ≡
∂

∂x2
,

etc. Thus, γ̇ is identified with

γ̇(s) = γ̇i∂i

At any given point p ∈ M the set of vectors forms a vector space, denoted
by TpM . The collection of all the tangent spaces is called the tangent bundle
to M , denoted by TM .
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A.3.1 Lie bracket

Vector fields can be added and multiplied by functions in the obvious way.
Another useful operation is the Lie bracket, or commutator, defined as

[X,Y ](f) := X(Y (f))− Y (X(f)) . (A.3.6)

One needs to check that this does indeed define a new vector field: the simplest
way is to use local coordinates,

[X,Y ](f) = Xj∂j(Y
i∂if)− Y j∂j(X

i∂if)

= Xj(∂j(Y
i)∂if + Y i∂j∂if)− Y j(∂j(X

i)∂if +Xi∂j∂if)

= (Xj∂jY
i − Y j∂jX

i)∂if +XjY i∂j∂if − Y jXi∂j∂if︸ ︷︷ ︸
=XjY i (∂j∂if − ∂i∂jf)︸ ︷︷ ︸

0

= (Xj∂jY
i − Y j∂jX

i)∂if , (A.3.7)

which is indeed a homogeneous first order differential operator. Here we have
used the symmetry of the matrix of second derivatives of twice differentiable
functions. We note that the last line of (A.3.7) also gives an explicit coordinate
expression for the commutator of two differentiable vector fields.

The Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 .

Indeed, if we write SX,Y,Z for a cyclic sum, then

([X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]])(f) = SX,Y,Z [X, [Y, Z]](f)

= SX,Y,Z {X([Y, Z](f))− [Y,Z](X(f))}
= SX,Y,Z {X(Y (Z(f)))−X(Z(Y (f)))− Y (Z(X(f))) + Z(Y (X(f)))} .

The third term is a cyclic permutation of the first, and the fourth a cyclic
permutation of the second, so the sum gives zero.

A.4 Covectors

Covectors are maps from the space of vectors to functions which are linear under
addition and multiplication by functions.

The basic object is the coordinate differential dxi, defined by its action on
vectors as follows:

dxi(Xj∂j) := Xi . (A.4.1)

Equivalently,

dxi(∂j) := δij :=

{
1, i = j;
0, otherwise.

The dxi’s form a basis for the space of covectors: indeed, let ϕ be a linear map
on the space of vectors, then

ϕ( X︸︷︷︸
Xi∂i

) = ϕ(Xi∂i) =︸︷︷︸
linearity

Xi ϕ(∂i)︸ ︷︷ ︸
call this ϕi

= ϕidx
i(X) =︸︷︷︸

def. of sum of functions

(ϕidx
i)(X) ,
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hence

ϕ = ϕidx
i ,

and every ϕ can indeed be written as a linear combination of the dxi’s. Under
a change of coordinates we have

ϕ̄iX̄
i = ϕ̄i

∂yi

∂xk
Xk = ϕkX

k ,

leading to the following transformation law for components of covectors:

ϕk = ϕ̄i
∂yi

∂xk
, (A.4.2)

Given a scalar f , we define its differential df as

df =
∂f

∂x1
dx1 + . . .+

∂f

∂xn
dxn .

With this definition, dxi is the differential of the coordinate function xi.

As presented above, the differential of a function is a covector by definition.
As an exercice, you should check directly that the collection of functions ϕi :=
∂if satisfies the transformation rule (A.4.2).

We have a formula which is often used in calculations

dyj =
∂yj

∂xk
dxk .

An elegant approach to the definition of differentials proceeds as follows: Given
any function f , we define:

df(X) := X(f) . (A.4.3)

(Recall that here we are viewing a vector field X as a differential operator on
functions, defined by (A.3.4).) The map X 7→ df(X) is linear under addition of
vectors, and multiplication of vectors by numbers: if λ, µ are real numbers, and X
and Y are vector fields, then

df(λX + µY ) =︸︷︷︸
by definition (A.4.3)

(λX + µY )(f)

=︸︷︷︸
by definition (A.3.4)

λXi∂if + µY i∂if

=︸︷︷︸
by definition (A.4.3)

λdf(X) + µdf(Y ) .

Applying (A.4.3) to the function f = xi we obtain

dxi(∂j) =
∂xi

∂xj
= δij ,

recovering (A.4.1).
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Example A.4.1 Let (ρ, ϕ) be polar coordinates on R2, thus x = ρ cosϕ, y =
ρ sinϕ, and then

dx = d(ρ cosϕ) = cosϕdρ− ρ sinϕdϕ ,

dy = d(ρ sinϕ) = sinϕdρ+ ρ cosϕdϕ .

At any given point p ∈M , the set of covectors forms a vector space, denoted
by T ∗pM . The collection of all the tangent spaces is called the cotangent bundle
to M , denoted by T ∗M .

Summarising, covectors are dual to vectors. It is convenient to define

dxi(X) := Xi ,

where Xi is as in (A.3.2). With this definition the (locally defined) bases
{∂i}i=1,...,dimM of TM and {dxj}i=1,...,dimM of T ∗M are dual to each other:

〈dxi, ∂j〉 := dxi(∂j) = δij ,

where δij is the Kronecker delta, equal to one when i = j and zero otherwise.

A.5 Bilinear maps, two-covariant tensors

A map is said to be multi-linear if it is linear in every entry; e.g. g is bilinear if

g(aX + bY, Z) = ag(X,Z) + bg(Y,Z) ,

and
g(X, aZ + bW ) = ag(X,Z) + bg(X,W ) .

Here, as elsewhere when talking about tensors, bilinearity is meant with respect
to addition and to multiplication by functions.

A map g which is bilinear on the space of vectors can be represented by a
matrix with two indices down:

g(X,Y ) = g(Xi∂i, Y
j∂j) = XiY j g(∂i, ∂j)︸ ︷︷ ︸

=:gij

= gijX
iY j = gijdx

i(X)dxj(Y ) .

We say that g is a covariant tensor of valence two.

We say that g is symmetric if g(X,Y ) = g(Y,X) for all X, Y ; equivalently,
gij = gji.

A symmetric bilinear tensor field is said to be non-degenerate if det gij has
no zeros.

By Sylvester’s inertia theorem, there exists a basis θi of the space of covec-
tors so that a symmetric bilinear map g can be written as

g(X,Y ) = θ1(X)θ1(Y )+. . .+θs(X)θs(Y )−θs+1(X)θs+1(Y )−. . .−θs+r(X)θs+r(Y )

(s, r) is called the signature of g; in geometry, unless specifically said otherwise,
one always assumed that the signature does not change from point to point.
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If s = n, in dimension n, then g is said to be a Riemannian metric tensor.

A canonical example is provided by the flat Riemannian metric on Rn is

g = (dx1)2 + . . .+ (dxn)2 .

By definition, a Riemannian metric is a field of symmetric two-covariant
tensors with signature (+, . . . ,+) and with det gij without zeros.

A Riemannian metric can be used to define the length of curves: if γ : [a, b] 3 s→
γ(s), then

`g(γ) =

∫ b

a

√
g(γ̇, γ̇)ds .

One can then define the distance between points by minimizing the length of the
curves connecting them.

If s = 1 and r = N − 1, in dimension N , then g is said to be a Lorentzian
metric tensor.

For example, the Minkowski metric on R1+n is

η = (dx0)2 − (dx1)2 − . . .− (dxn)2 .

A.6 Tensor products

If ϕ and θ are covectors we can define a bilinear map using the formula

(ϕ⊗ θ)(X,Y ) = ϕ(X)θ(Y ) . (A.6.1)

For example

(dx1 ⊗ dx2)(X,Y ) = X1Y 2 .

Using this notation we have

g(X,Y ) = g(Xi∂i, Y
j∂j) = g(∂j , ∂j)︸ ︷︷ ︸

=:gij

Xi︸︷︷︸
dxi(X)

Y j︸︷︷︸
dxj(Y )︸ ︷︷ ︸

(dxi⊗dxj(X,Y )

= (gijdx
i ⊗ dxj)(X,Y )

We will write dxidxj for the symmetric product,

dxidxj :=
1

2
(dxi ⊗ dxj + dxj ⊗ dxi) ,

and dxi ∧ dxj for the anti-symmetric one,

dxi ∧ dxj :=
1

2
(dxi ⊗ dxj − dxj ⊗ dxi) .

It should be clear how this generalises: the tensors dxi⊗ dxj ⊗ dxk, defined
as

(dxi ⊗ dxj ⊗ dxk)(X,Y, Z) = XiY jZk ,
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form a basis of three-linear maps on the space of vectors, which are objects of
the form

X = Xijkdx
i ⊗ dxj ⊗ dxk .

Here X is a called tensor of valence (0, 3). Each index transforms as for a
covector:

X = Xijkdx
i ⊗ dxj ⊗ dxk = Xijk

∂xi

∂ym
∂xj

∂y`
∂xk

∂yn
dym ⊗ dy` ⊗ dyn .

It is sometimes useful to think of vectors as linear maps on co-vectors, using
a formula which looks funny when first met: if θ is a covector, and X is a vector,
then

X(θ) := θ(X) .

So if θ = θidx
i and X = Xi∂i then

θ(X) = θiX
i = Xiθi = X(θ) .

It then makes sense to define e.g. ∂i ⊗ ∂j as a bilinear map on covectors:

(∂i ⊗ ∂j)(θ, ψ) := θiψj .

And one can define a map ∂i ⊗ dxj which is linear on forms in the first slot,
and linear in vectors in the second slot as

(∂i ⊗ dxj)(θ,X) := ∂i(θ)dx
j(X) = θiX

j . (A.6.2)

The ∂i ⊗ dxj ’s form the basis of the space of tensors of rank (1, 1):

T = T ij∂i ⊗ dxj .

Generally, a tensor of valence, or rank, (r, s) can be defined as an object
which has r vector indices and s covector indices, so that it transforms as

Si1...ir j1...js → Sm1...mr
`1...`s

∂yi1

∂xm1
. . .

∂yis

∂xmr
∂x`1

∂yj1
. . .

∂x`s

∂yjs

For example, if X = Xi∂i and Y = Y j∂j are vectors, then X⊗Y = XiY j∂i⊗∂j
forms a contravariant tensor of valence two.

Tensors of same valence can be added in the obvious way: e.g.

(A+B)(X,Y ) := A(X,Y ) +B(X,Y ) ⇐⇒ (A+B)ij = Aij +Bij .

Tensors can be multiplied by scalars: e.g.

(fA)(X,Y, Z) := fA(X,Y, Z) ⇐⇒ f(Aijk) := (fAijk) .

Finally, we have seen in (A.6.1) how to take tensor products for one forms, and
in (A.6.2) how to take a tensor product of a vector and a one form, but this
can also be done for higher order tensor; e.g., if S is of valence (a, b) and T is
a multilinear map of valence (c, d), then S ⊗ T is a multilinear map of valence
(a+ c, b+ d), defined as

(S ⊗ T )( θ, . . .︸ ︷︷ ︸
a covectors and b vectors

, ψ, . . .︸ ︷︷ ︸
c covectors and d vectors

) := S(θ, . . .)T (ψ, . . .) .
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A.6.1 Contractions

Given a tensor field Sij with one index down and one index up one can perform
the sum

Sii .

This defines a scalar, i.e., a function on the manifold. Indeed, using the trans-
formation rule

Sij → S̄`k = Sij
∂xj

∂yk
∂y`

∂xi
,

one finds

S̄`` = Sij
∂xj

∂y`
∂y`

∂xi︸ ︷︷ ︸
δji

= Sii ,

as desired.
One can similarly do contractions on higher valence tensors, e.g.

Si1i2...ir j1j2j3...js → S`i2...ir j1`j3...js .

After contraction, a tensor of rank (r + 1, s+ 1) becomes of rank (r, s).

A.7 Raising and lowering of indices

Let g be a symmetric two-covariant tensor field on M , by definition such an
object is the assignment to each point p ∈ M of a bilinear map g(p) from
TpM × TpM to R, with the additional property

g(X,Y ) = g(Y,X) .

In this work the symbol g will be reserved to non-degenerate symmetric two-
covariant tensor fields. It is usual to simply write g for g(p), the point p being
implicitly understood. We will sometimes write gp for g(p) when referencing p
will be useful.

The usual Sylvester’s inertia theorem tells us that at each p the map g will
have a well defined signature; clearly this signature will be point-independent
on a connected manifold when g is non-degenerate. A pair (M, g) is said to be a
Riemannian manifold when the signature of g is (dimM, 0); equivalently, when
g is a positive definite bilinear form on every product TpM×TpM . A pair (M, g)
is said to be a Lorentzian manifold when the signature of g is (dimM − 1, 1).
One talks about pseudo-Riemannian manifolds whatever the signature of g,
as long as g is non-degenerate, but we will only encounter Riemannian and
Lorentzian metrics in this work.

Since g is non-degenerate it induces an isomorphism

[ : TpM → T ∗pM

by the formula

X[(Y ) = g(X,Y ) .
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In local coordinates this gives

X[ = gijX
idxj =: Xjdx

j . (A.7.1)

This last equality defines Xj — “the vector Xj with the index j lowered”:

Xi := gijX
j . (A.7.2)

The operation (A.7.2) is called the lowering of indices in the physics literature
and, again in the physics literature, one does not make a distinction between
the one-form X[ and the vector X.

The inverse map will be denoted by ] and is called the raising of indices;
from (A.7.1) we obviously have

α] = gijαi∂j =: αi∂i ⇐⇒ dxi(α]) = αi = gijαj ,

where gij is the matrix inverse to gij . For example,

(dxi)] = gik∂k .

Clearly gij , understood as the matrix of a bilinear form on T ∗pM , has the same

signature as g, and can be used to define a scalar product g] on T ∗p (M):

g](α, β) := g(α], β]) ⇐⇒ g](dxi, dxj) = gij .

This last equality is justified as follows:

g](dxi, dxj) = g((dxi)], (dxj)]) = g(gik∂k, g
j`∂`) = gikgk`︸ ︷︷ ︸

=δi`

gj` = gji = gij .

It is convenient to use the same letter g for g] — physicists do it all the time
— or for scalar products induced by g on all the remaining tensor bundles, and
we will sometimes do so.

A.8 The Lie derivative

We start with a pedestrian approach to the definition of Lie derivative; the
elegant geometric definition is given at the end of the section.

Given a vector field X, the Lie derivative LX is an operation on tensor
fields, defined as follows:

For a function f , one sets

LXf := X(f) . (A.8.1)

For a vector field Y , the Lie derivative coincides with the Lie bracket:

LXY := [X,Y ] . (A.8.2)
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For a one form α, LXα is defined by imposing the Leibniz rule written back-
wards:

(LXα)(Y ) := LX(α(Y ))− α(LXY ) . (A.8.3)

(Indeed, the Leibniz rule applied to the contraction αiX
i would read

LX(αiY
i) = (LXα)iY

i + αi(LXY )i ,

which can be rewritten as (A.8.3).)

Let us check that (A.8.3) defines a one form. Clearly, the right-hand side
transforms in the desired way when Y is replaced by Y1 +Y2. Now, if we replace
Y by fY , where f is a function, then

(LXα)(fY ) = LX(α(fY ))− α( LX(fY )︸ ︷︷ ︸
X(f)Y+fLXY

)

= X(fα(Y ))− α(X(f)Y + fLXY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y )− α(fLXY ))

= fX(α(Y ))− fα(LXY ))

= f((LXα)(Y )) .

So LXα is a C∞-linear map on vector fields, hence a covector field.

In coordinate-components notation we have

(LXα)a = Xb∂bαa + αb∂aX
b .

Indeed,

(LXα)iY
i := LX(αiY

i)− αi(LXY )i

= Xk∂k(αiY
i)− αi(Xk∂kY

i − Y k∂kX
i)

= Xk(∂kαi)Y
i + αiY

k∂kX
i

=
(
Xk∂kαi + αk∂iX

k
)
Y i ,

as desired

For tensor products, the Lie derivative is defined by imposing linearity under
addition together with the Leibniz rule:

LX(α⊗ β) = (LXα)⊗ β + α⊗LXβ .

Since a general tensor A is a sum of tensor products,

A = Aa1...ap
b1...bq∂a1 ⊗ . . . ∂ap ⊗ dxb1 ⊗ . . .⊗ dxap ,

requiring linearity with respect to addition of tensors gives thus a definition of
Lie derivative for any tensor.

For example, we claim that

LXT
a
b = Xc∂cT

a
b − T cb∂cXa + T ac∂bX

c , (A.8.4)
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To see this, call a tensor T ab simple if it is of the form Y ⊗ α, where Y is a
vector and α is a covector. Using indices, this corresponds to Y aαb and so, by
the Leibniz rule,

LX(Y ⊗ α)ab = LX(Y aαb)

= (LXY )aαb + Y a(LXα)b

= (Xc∂cY
a − Y c∂cX

a)αb + Y a(Xc∂cαb + αc∂bX
c)

= Xc∂c(Y
aαb)− Y cαb∂cX

a + Y aαc∂bX
c ,

which coincides with (A.8.4) if T ab = Y bαb. But a general T ab can be written
as a linear combination with constant coefficients of simple tensors,

T =
∑
a,b

T ab∂a ⊗ dxb︸ ︷︷ ︸
no summation, so simple

,

and the result follows.
Similarly, one has, e.g.,

LXR
ab = Xc∂cR

ab −Rac∂cXb −Rbc∂cXa ,

LXSab = Xc∂cSab + Sac∂bX
c + Sbc∂aX

c , (A.8.5)

etc. Those are all special cases of the general formula for the Lie derivative
LXA

a1...ap
b1...bq :

LXA
a1...ap

b1...bq = Xc∂cA
a1...ap

b1...bq −Aca2...ap
b1...bq∂cX

a1 − . . .
+Aa1...ap

cb1...bq∂b1X
c + . . . .

A useful property of Lie derivatives is

L[X,Y ] = [LX ,LY ] , (A.8.6)

where, for a tensor T , the commutator [LX ,LY ]T is defined in the usual way:

[LX ,LY ]T := LX(LY T )−LY (LXT ) . (A.8.7)

To see this, we first note that if T = f is a function, then the right-hand-side of
(A.8.7) is the definition of [X,Y ](f), which in turn coincides with the definition
of L[X,Y ](f).

Next, for a vector field T = Z, (A.8.6) reads

L[X,Y ]Z = LX(LY Z)−LY (LXZ) , (A.8.8)

which is the same as

[[X,Y ], Z] = [X, [Y,Z]]− [Y, [X,Z]] , (A.8.9)

which is the same as

[Z, [Y,X]] + [X, [Z, Y ]] + [Y, [X,Z]] = 0 , (A.8.10)
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which is the Jacobi identity. Hence (A.8.6) holds for vector fields.
We continue with a one form α. We use the definitions, with Z any vector

field:

(LXLY α)(Z) = X( (LY α)(Z)︸ ︷︷ ︸
Y (α(Z))−α(LY Z))

)− (LY α) (LXZ)︸ ︷︷ ︸
Y (α(LXZ))−α(LY LXZ)

= X(Y (α(Z)))−X(α(LY Z)))− Y (α(LXZ)) + α(LY LXZ) .

Antisymmetrizing over X and Y , the second and third term above cancel out,
so that

((LXLY α−LY LX)α)(Z) = X(Y (α(Z))) + α(LY LXZ)− (X ←→ Y )

= [X,Y ](α(Z))− α(LXLY Z −LY LXZ)

= L[X,Y ](α(Z))− α(L[X,Y ]Z)

= (L[X,Y ]α)(Z) .

Since Z is arbitrary, (A.8.6) for covectors follows.
To conclude that (A.8.6) holds for arbitrary tensor fields, we note that by

construction we have

L[X,Y ](A⊗B) = L[X,Y ]A⊗B +A⊗L[X,Y ]B . (A.8.11)

Similarly

LXLY (A⊗B) = LX(LYA⊗B +A⊗LYB)

= LXLYA⊗B + LXA⊗LYB + LYA⊗LXB

+A⊗LXLYB . (A.8.12)

Exchanging X with Y and subtracting, the middle terms drop out:

[LX ,LY ](A⊗B) = [LX ,LY ]A⊗B +A⊗ [LX ,LY ]B . (A.8.13)

Basing on what has been said, the reader should have no difficulties finishing
the proof of (A.8.6).

Example A.8.1 As an example of application of the formalism, suppose that there
exists a coordinate system in which (Xa) = (1, 0, 0, 0) and ∂0gbc = 0. Then

LXgab = ∂0gab = 0 .

But the Lie derivative of a tensor field is a tensor field, and we conclude that
LXgab = 0 holds in every coordinate system.

Vector fields for which LXgab = 0 are called Killing vectors: they arise from
symmetries of space-time. We have the useful formula

LXgab = ∇aXb +∇bXa . (A.8.14)

An effortless proof of this proceeds as follows: in adapted coordinates in which the
derivatives of the metric vanish at a point p, one immediately checks that equality
holds at p. But both sides are tensor fields, therefore the result holds at p for all
coordinate systems, and hence also everywhere.
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The brute-force proof of (A.8.14) proceeds as follows:

LXgab = Xc∂cgab + ∂aX
cgcb + ∂bX

cgca

= Xc∂cgab + ∂a(Xcgcb)−Xc∂agcb + ∂b(X
cgca)−Xc∂bgca

= ∂aXb + ∂bXa +Xc (∂cgab − ∂agcb − ∂bgca)︸ ︷︷ ︸
−2gcdΓdab

= ∇aXb +∇bXa .

A.9 Covariant derivatives

When dealing with Rn, or subsets thereof, there exists an obvious prescription
for how to differentiate tensor fields: in this case we have at our disposal the
canonical “trivialization {∂i}i=1,...,n of TRn” (this means: a globally defined set
of vectors which, at every point, form a basis of the tangent space), together
with its dual trivialization {dxj}i=1,...,n of T ∗Rn. We can expand a tensor field
T of valence (k, `) in terms of those bases,

T = T i1...ik j1...j`∂i1 ⊗ . . .⊗ ∂ik ⊗ dx
j1 ⊗ . . .⊗ dxj`

⇐⇒ T i1...ik j1...j` = T (dxi1 , . . . , dxik , ∂j1 , . . . , ∂j`) , (A.9.1)

and differentiate each component T i1...ik j1...j` of T separately:

X(T )
in the coordinate system xi

:= Xi∂T
i1...ik

j1...j`

∂xi
∂xi1⊗. . .⊗∂xik⊗dx

j1⊗. . .⊗dxj` .
(A.9.2)

The resulting object does, however, not behave as a tensor under coordinate
transformations, in the sense that the above form of the right-hand-side will
not be preserved under coordinate transformations: as an example, consider
the one-form T = dx on Rn, which has vanishing derivative as defined by
(A.9.2). When expressed in spherical coordinates we have

T = d(ρ cosϕ) = −ρ sinϕdϕ+ cosϕdρ ,

the partial derivatives of which are non-zero (both with respect to the original
cartesian coordinates (x, y) and to the new spherical ones (ρ, ϕ)).

The Lie derivative LX of Section A.8 maps tensors to tensors but does not
resolve this question, because it is not linear under multiplication of X by a
function.

The notion of covariant derivative, sometimes also referred to as connec-
tion, is introduced precisely to obtain a notion of derivative which has tensorial
properties. By definition, a covariant derivative is a map which to a vector field
X and a tensor field T assigns a tensor field of the same type as T , denoted by
∇XT , with the following properties:

1. ∇XT is linear with respect to addition both with respect to X and T :

∇X+Y T = ∇XT +∇Y T , ∇X(T + Y ) = ∇XT +∇XY ; (A.9.3)
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2. ∇XT is linear with respect to multiplication of X by functions f ,

∇fXT = f∇XT ; (A.9.4)

3. and, finally, ∇XT satisfies the Leibniz rule under multiplication of T by
a differentiable function f :

∇X(fT ) = f∇XT +X(f)T . (A.9.5)

By definition, if T is a tensor field of rank (p, q), then for any vector field
X the field ∇XT is again a tensor of type (p, q). Since ∇XT is linear in X, the
field ∇T can naturally be viewed as a tensor field of rank (p, q + 1).

It is natural to ask whether covariant derivatives do exist at all in general
and, if so, how many of them can there be. First, it immediately follows from
the axioms above that if D and ∇ are two covariant derivatives, then

∆(X,T ) := DXT −∇XT

is multi-linear both with respect to addition and multiplication by functions —
the non-homogeneous terms X(f)T in (A.9.5) cancel — and is thus a tensor
field. Reciprocally, if ∇ is a covariant derivative and ∆(X,T ) is bilinear with
respect to addition and multiplication by functions, then

DXT := ∇XT + ∆(X,T ) (A.9.6)

is a new covariant derivative. So, at least locally, on tensors of valence (r, s)
there are as many covariant derivatives as tensors of valence (r + s, r + s+ 1).

We note that the sum of two covariant derivatives is not a covariant deriva-
tive. However, convex combinations of covariant derivatives, with coefficients
which may vary from point to point, are again covariant derivatives. This re-
mark allows one to construct covariant derivatives using partitions of unity:
Let, indeed, {Oi}i∈N be an open covering of M by coordinate patches and let
ϕi be an associated partition of unity. In each of those coordinate patches we
can decompose a tensor field T as in (A.9.1), and define

DXT :=
∑
i

ϕiX
j∂j(T

i1...ik
j1...j`)∂i1 ⊗ . . .⊗ ∂ik ⊗ dx

j1 ⊗ . . .⊗ dxj` . (A.9.7)

This procedure, which depends upon the choice of the coordinate patches and
the choice of the partition of unity, defines one covariant derivative; all other
covariant derivatives are then obtained from D using (A.9.6). Note that (A.9.2)
is a special case of (A.9.7) when there exists a global coordinate system on
M . Thus (A.9.2) does define a covariant derivative. However, the associated
operation on tensor fields will not take the simple form (A.9.2) when we go to
a different coordinate system {yi} in general.
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A.9.1 Functions

The canonical covariant derivative on functions is defined as

∇X(f) = X(f) ,

and we will always use the above. This has all the right properties, so obviously
covariant derivatives of functions exist. From what has been said, any covariant
derivative on functions is of the form

∇Xf = X(f) + α(X)f , (A.9.8)

where α is a one-form. Conversely, given any one form α, (A.9.8) defines a
covariant derivative on functions. The addition of the lower-order term α(X)f
(A.9.8) does not appear to be very useful here, but it turns out to be useful
in geometric formulation of electrodynamics, or in geometric quantization. In
any case such lower-order terms play an essential role when defining covariant
derivatives of tensor fields.

A.9.2 Vectors

The simplest next possibility is that of a covariant derivative of vector fields.
Let us not worry about existence at this stage, but assume that a covariant
derivative exists, and work from there. (Anticipating, we will show shortly
that a metric defines a covariant derivative, called the Levi-Civita covariant
derivative, which is the unique covariant derivative operator satisfying a natural
set of conditions, to be discussed below.)

We will first assume that we are working on a set Ω ⊂ M over which we
have a global trivialization of the tangent bundle TM ; by definition, this means
that there exist vector fields ea, a = 1, . . . ,dimM , such that at every point
p ∈ Ω the fields ea(p) ∈ TpM form a basis of TpM .1

Let θa denote the dual trivialization of T ∗M — by definition the θa’s satisfy

θa(eb) = δab .

Given a covariant derivative ∇ on vector fields we set

Γab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = Γab(X)ea , (A.9.9a)

Γabc := Γab(ec) = θa(∇eceb) ⇐⇒ ∇Xeb = ΓabcX
cea . (A.9.9b)

The (locally defined) functions Γabc are called connection coefficients. If {ea}
is the coordinate basis {∂µ} we shall write

Γµαβ := dxµ(∇∂β∂α)
(
⇐⇒ ∇∂µ∂ν = Γσνµ∂σ

)
, (A.9.10)

1This is the case when Ω is a coordinate patch with coordinates (xi), then the
{ea}a=1,...,dimM can be chosen to be equal to {∂i}a=1,...,dimM . Recall that a manifold is
said to be parallelizable if a basis of TM can be chosen globally over M — in such a case Ω
can be taken equal to M . We emphasize that we are not assuming that M is parallelizable,
so that equations such as (A.9.9) have only a local character in general.
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etc. In this particular case the connection coefficients are usually called Christof-
fel symbols. We will sometimes write Γσνµ instead of Γσνµ; note that the former
convention is more common. By using the Leibniz rule (A.9.5) we find

∇XY = ∇X(Y aea)

= X(Y a)ea + Y a∇Xea
= X(Y a)ea + Y aΓba(X)eb

= (X(Y a) + Γab(X)Y b)ea

= (X(Y a) + ΓabcY
bXc)ea , (A.9.11)

which gives various equivalent ways of writing ∇XY . The (perhaps only locally
defined) Γab’s are linear in X, and the collection (Γab)a,b=1,...,dimM is sometimes
referred to as the connection one-form. The one-covariant, one-contravariant
tensor field ∇Y is defined as

∇Y := ∇aY bθa ⊗ eb ⇐⇒ ∇aY b := θb(∇eaY )⇐⇒ ∇aY b = ea(Y
b) + ΓbcaY

c .

(A.9.12)
We will often write ∇a for ∇ea . Further, ∇aY b will sometimes be written as
Y b

;a.

A.9.3 Transformation law

Consider a coordinate basis ∂xi , it is natural to enquire about the transformation
law of the connection coefficients Γijk under a change of coordinates xi →
yk(xi). To make things clear, let us write Γijk for the connection coefficients in

the x–coordinates, and Γ̂ijk for the ones in the y–cordinates. We calculate:

Γijk := dxi
(
∇ ∂

∂xk

∂

∂xj

)
= dxi

(
∇ ∂

∂xk

∂y`

∂xj
∂

∂y`

)
= dxi

( ∂2y`

∂xk∂xj
∂

∂y`
+
∂y`

∂xj
∇ ∂

∂xk

∂

∂y`

)
=

∂xi

∂ys
dys
( ∂2y`

∂xk∂xj
∂

∂y`
+
∂y`

∂xj
∇ ∂yr

∂xk
∂
∂yr

∂

∂y`

)
=

∂xi

∂ys
dys
( ∂2y`

∂xk∂xj
∂

∂y`
+
∂y`

∂xj
∂yr

∂xk
∇ ∂

∂yr

∂

∂y`

)
=

∂xi

∂ys
∂2ys

∂xk∂xj
+
∂xi

∂ys
∂y`

∂xj
∂yr

∂xk
Γ̂s`r . (A.9.13)

Summarising,

Γijk = Γ̂s`r
∂xi

∂ys
∂y`

∂xj
∂yr

∂xk
+
∂xi

∂ys
∂2ys

∂xk∂xj
. (A.9.14)

Thus, the Γijk’s do not form a tensor; instead they transform as a tensor plus a
non-homogeneous term containing second derivatives, as seen above. However,
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because the inhomogeneous term in (A.9.14) is symmetric under the interchange
of i and j, it follows from (A.9.14) that

T ijk := Γikj − Γijk

does transform as a tensor, called the torsion tensor of ∇.

Exercice A.9.1 Let Γijk transform as in (A.9.14) under coordinate transfor-
mations. If X and Y are vector fields, define in local coordinates

∇XY :=
(
X(Y i) + ΓijkX

kY k
)
∂i . (A.9.15)

Show that ∇XY transforms as a vector field under coordinate transformations
(and thus is a vector field).

A.9.4 Torsion

An index-free definition of torsion proceeds as follows: Let ∇ be a covariant deriva-
tive defined for vector fields, the torsion tensor T is defined by the formula

T (X,Y ) := ∇XY −∇YX − [X,Y ] , (A.9.16)

where [X,Y ] is the Lie bracketWe obviously have

T (X,Y ) = −T (Y,X) . (A.9.17)

Let us check that T is actually a tensor field: multi-linearity with respect to addition
is obvious. To check what happens under multiplication by functions, in view of
(A.9.17) it is sufficient to do the calculation for the first slot of T . We then have

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f

(
∇XY −∇YX

)
− Y (f)X − [fX, Y ] . (A.9.18)

To work out the last commutator term we compute, for any function g,

[fX, Y ](g) = fX(Y (g))− Y (fX(g))︸ ︷︷ ︸
=Y (f)X(g)+fY (X(g))

= f [X,Y ](g)− Y (f)X(g) ,

hence

[fX, Y ] = f [X,Y ]− Y (f)X , (A.9.19)

and the last term here cancels the undesirable second-to-last term in (A.9.18), as
required.

In a coordinate basis ∂µ we have [∂µ, ∂ν ] = 0 and one finds from (A.9.10)

Tµν := T (∂µ, ∂ν) = (Γσνµ − Γσµν)∂σ , (A.9.20)

which shows that — in coordinate frames — T is determined by twice the antisym-
metrization of the Γσµν ’s over the lower indices. In particular that last antisym-
metrization produces a tensor field.
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A.9.5 Covectors

Suppose that we are given a covariant derivative on vector fields, there is a
natural way of inducing a covariant derivative on one-forms by imposing the
condition that the duality operation be compatible with the Leibniz rule: given
two vector fields X and Y together with a field of one-forms α, one sets

(∇Xα)(Y ) := X(α(Y ))− α(∇XY ) . (A.9.21)

Let us, first, check that (A.9.21) indeed defines a field of one-forms. The lin-
earity, in the Y variable, with respect to addition is obvious. Next, for any
function f we have

(∇Xα)(fY ) = X(α(fY ))− α(∇X(fY ))

= X(f)α(Y ) + fX(α(Y ))− α(X(f)Y + f∇XY )

= f(∇Xα)(Y ) ,

as should be the case for one-forms. Next, we need to check that ∇ defined by
(A.9.21) does satisfy the remaining axioms imposed on covariant derivatives.
Again multi-linearity with respect to addition is obvious, as well as linearity
with respect to multiplication of X by a function. Finally,

∇X(fα)(Y ) = X(fα(Y ))− fα(∇XY )

= X(f)α(Y ) + f(∇Xα)(Y ) ,

as desired.
The duality pairing

T ∗pM × TpM 3 (α,X)→ α(X) ∈ R

is sometimes called contraction. As already pointed out, the operation ∇ on
one forms has been defined in (A.9.21) so as to satisfy the Leibniz rule under
duality pairing :

X(α(Y )) = (∇Xα)(Y ) + α(∇XY ) ; (A.9.22)

this follows directly from (A.9.21). This should not be confused with the Leib-
niz rule under multiplication by functions, which is part of the definition of
a covariant derivative, and therefore always holds. It should be kept in mind
that (A.9.22) does not necessarily hold for all covariant derivatives: if v∇ is
some covariant derivative on vectors, and f∇ is some covariant derivative on
one-forms, in general one will have

X(α(Y )) 6= (f∇X)α(Y ) + α(v∇XY ) .

Using the basis-expression (A.9.11) of ∇XY and the definition (A.9.21) we
have

∇Xα = Xa∇aαb θb ,
with

∇aαb := (∇eaα)(eb)

= ea(α(eb))− α(∇eaeb)
= ea(αb)− Γcbaαc .
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A.9.6 Higher order tensors

It should now be clear how to extend ∇ to tensors of arbitrary valence: if T is
r covariant and s contravariant one sets

(∇XT )(X1, . . . , Xr, α1, . . . αs) := X
(
T (X1, . . . , Xr, α1, . . . αs)

)
−T (∇XX1, . . . , Xr, α1, . . . αs)− . . .− T (X1, . . . ,∇XXr, α1, . . . αs)

−T (X1, . . . , Xr,∇Xα1, . . . αs)− . . .− T (X1, . . . , Xr, α1, . . .∇Xαs) .
(A.9.23)

The verification that this defines a covariant derivative proceeds in a way iden-
tical to that for one-forms. In a basis we have

∇XT = Xa∇aTa1...ar
b1...bsθa1 ⊗ . . .⊗ θar ⊗ eb1 ⊗ . . .⊗ ebs ,

and (A.9.23) gives

∇aTa1...ar
b1...bs := (∇eaT )(ea1 , . . . , ear , θ

b1 , . . . , θbs)

= ea(Ta1...ar
b1...bs)− Γca1aTc...ar

b1...bs − . . .− ΓcaraTa1...c
b1...bs

+Γb1caTa1...ar
c...bs + . . .+ ΓbscaTa1...ar

b1...c . (A.9.24)

Carrying over the last two lines of (A.9.23) to the left-hand-side of that equation
one obtains the Leibniz rule for ∇ under pairings of tensors with vectors or
forms. It should be clear from (A.9.23) that ∇ defined by that equation is
the only covariant derivative which agrees with the original one on vectors,
and which satisfies the Leibniz rule under the pairing operation. We will only
consider such covariant derivatives in this work.

A.9.7 Geodesics and Christoffel symbols

A geodesic can be defined as the stationary point of the action

I(γ) =
1

2

∫ b

a
g(γ̇, γ̇)(s)︸ ︷︷ ︸
=:L (γ,γ̇)

ds , (A.9.25)

where γ : [a, b]→M is a differentiable curve. Thus,

L (xµ, ẋν) =
1

2
gαβ(xµ)ẋαẋβ .

One readily finds the Euler-Lagrange equations for this Lagrange function:

d

ds

(
∂L

∂ẋµ

)
=
∂L

∂xµ
⇐⇒ d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0 . (A.9.26)

This provides a very convenient way of calculating the Christoffel symbols:
given a metric g, write down L , work out the Euler-Lagrange equations, and
identify the Christoffels as the coefficients of the first derivative terms in those
equations.
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(The Euler-Lagrange equations for (A.9.25) are identical with those of

Ĩ(γ) =

∫ b

a

√
|g(γ̇, γ̇)(s)|ds , (A.9.27)

but (A.9.25) is more convenient to work with. For example, L is differentiable
at points where γ̇ vanishes, while

√
|g(γ̇, γ̇)(s)| is not. The aesthetic advantage

of (A.9.27), of being reparameterization-invariant, is more than compensated
by the calculational convenience of L .)

Example A.9.2 As an example, consider a metric of the form

g = dr2 + f(r)dϕ2 .

Special cases of this metric include the Euclidean metric on R2 (then f(r) = r2),
and the canonical metric on a sphere (then f(r) = sin2 r, with r actually being the
polar angle θ). The Lagrangian (A.9.27) is thus

L =
1

2

(
ṙ2 + f(r)ϕ̇2

)
.

The Euler-Lagrange equations read

∂L

∂ϕ︸︷︷︸
0

=
d

ds

(
∂L

∂ϕ̇

)
=

d

ds
(f(r)ϕ̇) ,

so that

0 = fϕ̈+f ′ṙϕ̇ = f
(
ϕ̈+ Γϕϕϕϕ̇

2 + 2Γϕrϕṙϕ̇+ Γϕr ṙ
2
)

=⇒ Γϕϕϕ = Γϕrr = 0 , Γϕrϕ =
f ′

2f
.

Similarly

∂L

∂r︸︷︷︸
f ′ϕ̇2/2

=
d

ds

(
∂L

∂ṙ

)
= r̈ ,

so that

Γrrϕ = Γrrr = 0 , Γrϕϕ = −f
′

2
.

A.10 The Levi-Civita connection

One of the fundamental results in pseudo-Riemannian geometry is that of the
existence of a torsion-free connection which preserves the metric:

Theorem A.10.1 Let g be a two-covariant symmetric non-degenerate tensor
field on a manifold M . Then there exists a unique connection ∇ such that

1. ∇g = 0,

2. the torsion tensor T of ∇ vanishes.
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Proof: Using the definition of ∇igjk we have

0 = ∇igjk ≡ ∂igjk − Γ`jig`k − Γ`kig`j ; (A.10.1)

here we have written Γijk instead of Γijk, as is standard in the literature. We
rewrite this equation making cyclic permutations of indices, and changing the
overall sign:

0 = −∇jgki ≡ −∂jgki + Γ`kjg`i + Γ`ijg`k .

0 = −∇kgij ≡ −∂kgij + Γ`ikg`j + Γ`jkg`i .

Adding the three equations and using symmetry of Γkji in ij one obtains

0 = ∂igjk − ∂jgki − ∂kgij + 2Γ`jkg`i ,

Multiplying by gim we obtain

Γmjk = gmiΓ`jkg`i =
1

2
gmi(∂igjk − ∂jgki − ∂kgij) . (A.10.2)

This proves uniqueness.
A straightforward, though somewhat lengthy, calculation shows that the

Γmjk’s defined by (A.10.2) satisfy the transformation law (A.9.14). Exercice
A.9.1 shows that the formula (A.9.15) defines a torsion-free connection. It then
remains to check that the insertion of Γmjk, as given by (A.10.2), into the right-
hand-side of (A.10.1), indeed gives zero, proving existence. 2

Let us give a coordinate-free version of the above, which turns out to be much
messier: Suppose, first, that a connection satisfying the above is given. By the
Leibniz rule we then have for any vector fields X, Y and Z,

0 = (∇Xg)(Y, Z) = X(g(Y, Z))− g(∇XY,Z)− g(Y,∇XZ) . (A.10.3)

One then rewrites the same equation applying cyclic permutations to X, Y , and Z,
with a minus sign for the last equation:

g(∇XY, Z) + g(Y,∇XZ) = X(g(Y,Z)) ,

g(∇Y Z,X) + g(Z,∇YX) = Y (g(Z,X)) ,

−g(∇ZX,Y )− g(X,∇ZY ) = −Z(g(X,Y )) . (A.10.4)

As the torsion tensor vanishes, the sum of the left-hand-sides of these equations can
be manipulated as follows:

g(∇XY, Z) + g(Y,∇XZ) + g(∇Y Z,X) + g(Z,∇YX)− g(∇ZX,Y )− g(X,∇ZY )

= g(∇XY +∇YX,Z) + g(Y,∇XZ −∇ZX) + g(X,∇Y Z −∇ZY )

= g(2∇XY − [X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y,Z])

= 2g(∇XY,Z)− g([X,Y ], Z) + g(Y, [X,Z]) + g(X, [Y, Z]) .

This shows that the sum of the three equations (A.10.4) can be rewritten as

2g(∇XY,Z) = g([X,Y ], Z)− g(Y, [X,Z])− g(X, [Y, Z])

+X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y )) . (A.10.5)
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Since Z is arbitrary and g is non-degenerate, the left-hand-side of this equation
determines the vector field ∇XY uniquely, and uniqueness of ∇ follows.

To prove existence, let S(X,Y )(Z) be defined as one half of the right-hand-side
of (A.10.5),

S(X,Y )(Z) =
1

2

(
X(g(Y,Z)) + Y (g(Z,X))− Z(g(X,Y ))

+g(Z, [X,Y ])− g(Y, [X,Z])− g(X, [Y, Z])
)
. (A.10.6)

Clearly S is linear with respect to addition in all fields involved. It is straightforward
to check that it is linear with respect to multiplication of Z by a function, and since
g is non-degenerate there exists a unique vector field W (X,Y ) such that

S(X,Y )(Z) = g(W (X,Y ), Z) .

One readily checks that the assignment

(X,Y )→W (X,Y )

satisfies all the requirements imposed on a covariant derivative ∇XY . With some
more work one checks that ∇X so defined is torsion free, and metric compatible. 2

Let us check that (A.10.5) reproduces (A.10.2): Consider (A.10.5) with X = ∂γ ,
Y = ∂β and Z = ∂σ,

2g(∇γ∂β , ∂σ) = 2g(Γρβγ∂ρ, ∂σ)

= 2gρσΓρβγ

= ∂γgβσ + ∂βgγσ − ∂σgβγ (A.10.7)

Multiplying this equation by gασ/2 we then obtain

Γαβγ = 1
2g
ασ{∂βgσγ + ∂γgσβ − ∂σgβγ} . (A.10.8)

A.11 “Local inertial coordinates”

Proposition A.11.1 1. Let g be a Lorentzian metric, for every p ∈ M there
exists a neighborhood thereof with a coordinate system such that gµν = ηµν =
diag(1,−1, · · · ,−1) at p.

2. If g is differentiable, then the coordinates can be further chosen so that

∂σgαβ = 0 (A.11.1)

at p.

The coordinates above will be referred to as local inertial coordinates near
p.

Remark A.11.2 An analogous result holds for any pseudo-Riemannian metric.
Note that the “normal coordinates” satisfy the above. However, for metrics
of finite differentiability, the introduction of normal coordinates leads to a loss
of differentiability of the metric components, while the construction below pre-
serves the order of differentiability.
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Proof: 1. Let yµ be any coordinate system around p, shifting by a constant
vector we can assume that p corresponds to yµ = 0. Let ea = ea

µ∂/∂yµ be any
frame at p such that g(ea, eb) = ηab — such frames can be found by, e.g., a
Gram-Schmidt orthogonalisation. Calculating the determinant of both sides of
the equation

gµνea
µeb

ν = ηab

we obtain, at p,
det(gµν) det(ea

µ)2 = −1 ,

which shows that det(ea
µ) is non-vanishing. It follows that the formula

yµ = eµax
a

defines a (linear) diffeomorphism. In the new coordinates we have, again at p,

g
( ∂

∂xa
,
∂

∂xb

)
= eµae

ν
bg
( ∂

∂yµ
,
∂

∂yν

)
= ηab . (A.11.2)

2. We will use (A.9.14), which uses latin indices, so let us switch to that
notation. Let xi be the coordinates described in point 1., recall that p lies at the
origin of those coordinates. The new coordinates x̂j will be implicitly defined
by the equations

xi = x̂i +
1

2
Aijkx̂

j x̂k ,

where Aijk is a set of constants, symmetric with respect to the interchange of
j and k. Recall (A.9.14),

Γ̂ijk = Γs`r
∂x̂i

∂xs
∂x`

∂x̂j
∂xr

∂x̂k
+
∂x̂i

∂xs
∂2xs

∂x̂k∂x̂j
; (A.11.3)

here we use Γ̂s`r to denote the Christoffel symbols of the metric in the hatted
coordinates. Then, at xi = 0, this equation reads

Γ̂ijk = Γs`r
∂x̂i

∂xs︸︷︷︸
δis

∂x`

∂x̂j︸︷︷︸
δ`j

∂xr

∂x̂k︸︷︷︸
δrk

+
∂xi

∂xs︸︷︷︸
δis

∂2xs

∂x̂k∂x̂j︸ ︷︷ ︸
Askj

= Γijk +Aikj .

Choosing Aijk as −Γijk(0), the result follows.

If you do not like to remember formulae such as (A.9.14), proceed as follows:
Let xµ be the coordinates described in point 1. The new coordinates x̂α will be
implicitly defined by the equations

xµ = x̂µ +
1

2
Aµαβ x̂

αx̂β ,

where Aµαβ is a set of constants, symmetric with respect to the interchange of α
and β. Set

ĝαβ := g
( ∂

∂x̂α
,
∂

∂x̂β

)
, gαβ := g

( ∂

∂xα
,
∂

∂xβ

)
.
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Recall the transformation law

ĝµν(x̂σ) = gαβ(xρ(x̂σ))
∂xα

∂x̂µ
∂xβ

∂x̂ν
.

By differentiation one obtains at xµ = x̂µ = 0,

∂ĝµν
∂x̂ρ

(0) =
∂gµν
∂xρ

(0) + gαβ(0)
(
Aαµρδ

β
ν + δαµA

β
νρ

)
=

∂gµν
∂xρ

(0) +Aνµρ +Aµνρ , (A.11.4)

where

Aαβγ := gασ(0)Aσβγ .

It remains to show that we can choose Aσβγ so that the left-hand-side can be made
to vanish at p. An explicit formula for Aσβγ can be obtained from (A.11.4) by a
cyclic permutation calculation similar to that in (A.10.4). After raising the first
index, the final result is

Aαβγ =
1

2
gαρ

{
∂gβγ
∂xρ

− ∂gβρ
∂xγ

− ∂gργ
∂xβ

}
(0) ;

the reader may wish to check directly that this does indeed lead to a vanishing
right-hand-side of (A.11.4).

2

A.12 Curvature

Let ∇ be a covariant derivative defined for vector fields, the curvature tensor
is defined by the formula

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z , (A.12.1)

where, as elsewhere, [X,Y ] is the Lie bracket defined in (A.3.6). We note the
anti-symmetry

R(X,Y )Z = −R(Y,X)Z . (A.12.2)

It turns out the this defines a tensor. Multi-linearity with respect to addition
is obvious, but multiplication by functions require more work.

First, we have (see (A.9.19))

R(fX, Y )Z = ∇fX∇Y Z −∇Y∇fXZ −∇[fX,Y ]Z

= f∇X∇Y Z −∇Y (f∇XZ)− ∇f [X,Y ]−Y (f)XZ︸ ︷︷ ︸
=f∇[X,Y ]Z−Y (f)∇XZ

= fR(X,Y )Z .

The simplest proof of linearity in the last slot proceeds via an index calculation in
adapted coordinates; so while we will do the “elegant”, index-free version shortly,
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let us do the ugly one first. We use the coordinate system of Proposition A.11.1
below, in which the first derivatives of the metric vanish at the prescribed point p:

∇i∇jZk = ∂i(∂jZ
k − Γk`jZ

`) + 0×∇Z︸ ︷︷ ︸
at p

= ∂i∂jZ
k − ∂iΓk`jZ` at p . (A.12.3)

Antisymmetrising in i and j, the terms involving the second derivatives of Z drop
out, so the result is indeed linear in Z. So ∇i∇jZk−∇j∇iZk is a tensor field linear
in Z, and therefore can be written as Rk`ijZ

`.
Note that ∇i∇jZk is, by definition, the tensor field of first covariant derivatives

of the tensor field ∇jZk, while (A.12.1) involves covariant derivatives of vector fields
only, so the equivalence of both approaches requires a further argument. This is
provided in the calculation below leading to (A.12.5).

Next,

R(X,Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

=
{
∇X
(
Y (f)Z + f∇Y Z

)}
−
{
· · ·
}
X↔Y

−[X,Y ](f)Z − f∇[X,Y ]Z

=
{
X(Y (f))Z︸ ︷︷ ︸

a

+Y (f)∇XZ +X(f)∇Y Z︸ ︷︷ ︸
b

+f∇X∇Y Z
}
−
{
· · ·
}
X↔Y

− [X,Y ](f)Z︸ ︷︷ ︸
c

−f∇[X,Y ]Z .

Now, a together with its counterpart with X and Y interchanged cancel out
with c, while b is symmetric with respect to X and Y and therefore cancels out
with its counterpart with X and Y interchanged, leading to the desired equality

R(X,Y )(fZ) = fR(X,Y )Z .

In a coordinate basis {ea} = {∂µ} we find2 (recall that [∂µ, ∂ν ] = 0)

Rαβγδ := 〈dxα, R(∂γ , ∂δ)∂β〉
= 〈dxα,∇γ∇δ∂β〉 − 〈· · ·〉δ↔γ
= 〈dxα,∇γ(Γσβδ∂σ)〉 − 〈· · ·〉δ↔γ
= 〈dxα, ∂γ(Γσβδ)∂σ + ΓρσγΓσβδ∂ρ〉 − 〈· · ·〉δ↔γ
= {∂γΓαβδ + ΓασγΓσβδ} − {· · ·}δ↔γ ,

leading finally to

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ + ΓασγΓσβδ − ΓασδΓ
σ
βγ . (A.12.4)

In a general frame some supplementary commutator terms will appear in the
formula for Rabcd.

We note the following:

2The reader is warned that certain authors use a different sign convention either for
R(X,Y )Z, or for Rαβγδ, or both. A useful table that lists the sign conventions for a se-
ries of standard GR references can be found on the backside of the front cover of [125].
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Theorem A.12.1 There exists a coordinate system in which the metric tensor
field has vanishing second derivatives at p if and only if its Riemann tensor
vanishes at p. Furthermore, there exists a coordinate system in which the met-
ric tensor field has constant entries near p if and only if the Riemann tensor
vanishes near p.

Proof: The condition is necessary, since Riem is a tensor. The sufficiency will
be admitted. 2

The calculation of the curvature tensor is often a very traumatic experience.
There is one obvious case where things are painless, when all gµν ’s are constants:
in this case the Christoffels vanish, and so does the curvature tensor.

For more general metrics one way out is to use symbolic computer algebra,
this can, e.g., be done online on http://grtensor.phy.queensu.ca/NewDemo.
The Mathematica package xAct [114] provides a very powerful tool for all
kinds of calculations involving curvature.

Example A.12.2 As a less trivial example, consider the round two sphere, which
we write in the form

g = dθ2 + e2fdϕ2 , e2f = sin2 θ .

The Christoffel symbols are easily founds from the Lagrangean for geodesics:

L =
1

2
(θ̇2 + e2f ϕ̇2) .

The Euler-Lagrange equations give

Γθϕϕ = −f ′e2f , Γϕθϕ = Γϕϕθ = f ′ ,

with the remaining Christoffel symbols vanishing. Using the definition of the Rie-
mann tensor we then immediately find

Rϕθϕθ = −f ′′ − (f ′)2 = 1 .

All remaining components of the Riemann tensor can be obtained from this one by
raising and lowering of indices, together with the symmetry operations which we
are about to describe. This leads to

Rab = gab , R = 2 .

Equation (A.12.1) is most frequently used “upside-down”, not as a definition
of the Riemann tensor, but as a tool for calculating what happens when one
changes the order of covariant derivatives. Recall that for partial derivatives
we have

∂µ∂νZ
σ = ∂ν∂µZ

σ ,

but this is not true in general if partial derivatives are replaced by covariant
ones:

∇µ∇νZσ 6= ∇ν∇µZσ .

To find the correct formula let us consider the tensor field S defined as

Y −→ S(Y ) := ∇Y Z .
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In local coordinates, S takes the form

S = ∇µZν dxµ ⊗ ∂ν .

It follows from the Leibniz rule — or, equivalently, from the definitions in
Section A.9 — that we have

(∇XS)(Y ) = ∇X(S(Y ))− S(∇XY )

= ∇X∇Y Z −∇∇XY Z .

The commutator of the derivatives can then be calculated as

(∇XS)(Y )− (∇Y S)(X) = ∇X∇Y Z −∇Y∇XZ −∇∇XY Z +∇∇YXZ
= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

+∇[X,Y ]Z −∇∇XY Z +∇∇YXZ
= R(X,Y )Z −∇T (X,Y )Z . (A.12.5)

Writing ∇S in the usual form

∇S = ∇σSµν dxσ ⊗ dxµ ⊗ ∂ν = ∇σ∇µZν dxσ ⊗ dxµ ⊗ ∂ν ,

we are thus led to

∇µ∇νZα −∇ν∇µZα = RασµνZ
σ − T σµν∇σZα . (A.12.6)

In the important case of vanishing torsion, the coordinate-component equivalent
of (A.12.1) is thus

∇µ∇νXα −∇ν∇µXα = RασµνX
σ . (A.12.7)

An identical calculation gives, still for torsionless connections,

∇µ∇νaα −∇ν∇µaα = −Rσαµνaσ . (A.12.8)

For a general tensor t and torsion-free connection each tensor index comes with
a corresponding Riemann tensor term:

∇µ∇νtα1...αr
β1...βs −∇ν∇µtα1...αr

β1...βs =

−Rσα1µνtσ...αr
β1...βs − . . .−Rσαrµνtα1...σ

β1...βs

+Rβ1
σµνtα1...αr

σ...βs + . . .+Rβsσµνtα1...αr
β1...σ . (A.12.9)

A.12.1 Bianchi identities

We have already seen the anti-symmetry property of the Riemann tensor, which
in the index notation corresponds to the equation

Rαβγδ = −Rαβδγ . (A.12.10)
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There are a few other identities satisfied by the Riemann tensor, we start with
the first Bianchi identity. Let A(X,Y, Z) be any expression depending upon
three vector fields X,Y, Z which is antisymmetric in X and Y , we set∑

[XY Z]

A(X,Y, Z) := A(X,Y, Z) +A(Y,Z,X) +A(Z,X, Y ) , (A.12.11)

thus
∑

[XY Z] is a sum over cyclic permutations of the vectors X,Y, Z. Clearly,∑
[XY Z]

A(X,Y, Z) =
∑

[XY Z]

A(Y,Z,X) =
∑

[XY Z]

A(Z,X, Y ) . (A.12.12)

Suppose, first, that X, Y and Z commute. Using (A.12.12) together with the
definition (A.9.16) of the torsion tensor T we calculate∑

[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
∇X∇Y Z −∇Y∇XZ

)
=

∑
[XY Z]

(
∇X∇Y Z −∇Y (∇ZX + T (X,Z))︸ ︷︷ ︸

we have used [X,Z]=0, see (A.9.16)

)
=

∑
[XY Z]

∇X∇Y Z −
∑

[XY Z]

∇Y∇ZX︸ ︷︷ ︸
=0 (see (A.12.12))

−
∑

[XY Z]

∇Y (T (X,Z)︸ ︷︷ ︸
=−T (Z,X)

)

=
∑

[XY Z]

∇X(T (Y,Z)) ,

and in the last step we have again used (A.12.12). This can be somewhat
rearranged by using the definition of the covariant derivative of a higher or-
der tensor (compare (A.9.23)) — equivalently, using the Leibniz rule rewritten
upside-down:

(∇XT )(Y,Z) = ∇X(T (Y,Z))− T (∇XY,Z)− T (Y,∇XZ) .

This leads to∑
[XY Z]

∇X(T (Y, Z)) =
∑

[XY Z]

(
(∇XT )(Y,Z) + T (∇XY, Z) + T (Y, ∇XZ︸ ︷︷ ︸

=T (X,Z)+∇ZX

)
)

=
∑

[XY Z]

(
(∇XT )(Y,Z)− T (T (X,Z)︸ ︷︷ ︸

=−T (Z,X)

, Y )
)

+
∑

[XY Z]

T (∇XY,Z) +
∑

[XY Z]

T (Y,∇ZX)︸ ︷︷ ︸
=−T (∇ZX,Y )︸ ︷︷ ︸

=0 (see (A.12.12))

=
∑

[XY Z]

(
(∇XT )(Y,Z) + T (T (X,Y ), Z)

)
.
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Summarizing, we have obtained the first Bianchi identity:∑
[XY Z]

R(X,Y )Z =
∑

[XY Z]

(
(∇XT )(Y, Z) + T (T (X,Y ), Z)

)
, (A.12.13)

under the hypothesis that X, Y and Z commute. However, both sides of this
equation are tensorial with respect to X, Y and Z, so that they remain correct
without the commutation hypothesis.

We are mostly interested in connections with vanishing torsion, in which
case (A.12.13) can be rewritten as

Rαβγδ +Rαγδβ +Rαδβγ = 0 . (A.12.14)

Our next goal is the second Bianchi identity. We consider four vector fields
X, Y , Z and W and we assume again that everybody commutes with everybody
else. We calculate∑

[XY Z]

∇X(R(Y,Z)W ) =
∑

[XY Z]

(
∇X∇Y∇ZW︸ ︷︷ ︸

=R(X,Y )∇ZW+∇Y∇X∇ZW

−∇X∇Z∇YW
)

=
∑

[XY Z]

R(X,Y )∇ZW

+
∑

[XY Z]

∇Y∇X∇ZW −
∑

[XY Z]

∇X∇Z∇YW︸ ︷︷ ︸
=0

. (A.12.15)

Next,∑
[XY Z]

(∇XR)(Y,Z)W =
∑

[XY Z]

(
∇X(R(Y, Z)W )−R(∇XY,Z)W

−R(Y, ∇XZ︸ ︷︷ ︸
=∇ZX+T (X,Z)

)W −R(Y,Z)∇XW
)

=
∑

[XY Z]

∇X(R(Y, Z)W )

−
∑

[XY Z]

R(∇XY,Z)W −
∑

[XY Z]

R(Y,∇ZX)W︸ ︷︷ ︸
=−R(∇ZX,Y )W︸ ︷︷ ︸

=0

−
∑

[XY Z]

(
R(Y, T (X,Z))W +R(Y, Z)∇XW

)
=

∑
[XY Z]

(
∇X(R(Y, Z)W )−R(T (X,Y ), Z)W −R(Y, Z)∇XW

)
.

It follows now from (A.12.15) that the first term cancels out the third one,
leading to ∑

[XY Z]

(∇XR)(Y,Z)W = −
∑

[XY Z]

R(T (X,Y ), Z)W , (A.12.16)
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which is the desired second Bianchi identity for commuting vector fields. As
before, because both sides are multi-linear with respect to addition and multi-
plication by functions, the result remains valid for arbitrary vector fields.

For torsionless connections the components equivalent of (A.12.16) reads

Rαµβγ;δ +Rαµγδ;β +Rαµδβ;γ = 0 . (A.12.17)

A.12.2 Pair interchange symmetry

There is one more identity satisfied by the curvature tensor which is specific to
the curvature tensor associated with the Levi-Civita connection, namely

g(X,R(Y,Z)W ) = g(Y,R(X,W )Z) . (A.12.18)

If one sets

Rabcd := gaeR
e
bcd , (A.12.19)

then (A.12.18) is equivalent to

Rabcd = Rcdab . (A.12.20)

We will present two proofs of (A.12.18). The first is direct, but not very
elegant. The second is prettier, but less insightful.

For the ugly proof, we suppose that the metric is twice-differentiable. By
point 2. of Proposition A.11.1, in a neighborhood of any point p ∈ M there
exists a coordinate system in which the connection coefficients Γαβγ vanish at
p. Equation (A.12.4) evaluated at p therefore reads

Rαβγδ = ∂γΓαβδ − ∂δΓαβγ

=
1

2

{
gασ∂γ(∂δgσβ + ∂βgσδ − ∂σgβδ)

−gασ∂δ(∂γgσβ + ∂βgσγ − ∂σgβγ)
}

=
1

2
gασ

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
.

Equivalently,

Rσβγδ(0) =
1

2

{
∂γ∂βgσδ − ∂γ∂σgβδ − ∂δ∂βgσγ + ∂δ∂σgβγ

}
(0) . (A.12.21)

This last expression is obviously symmetric under the exchange of σβ with γδ,
leading to (A.12.20).

The above calculation traces back the pair-interchange symmetry to the
definition of the Levi-Civita connection in terms of the metric tensor. As already
mentioned, there exists a more elegant proof, where the origin of the symmetry
is perhaps somewhat less apparent, which proceeds as follows: We start by
noting that

0 = ∇a∇bgcd −∇b∇agcd = −Recabged −Redabgce , (A.12.22)
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leading to anti-symmetry in the first two indices:

Rabcd = −Rbacd .

Next, using the cyclic symmetry for a torsion-free connection, we have

Rabcd +Rcabd +Rbcad = 0 ,

Rbcda +Rdbca +Rcdba = 0 ,

Rcdab +Racdb +Rdacb = 0 ,

Rdabc +Rbdac +Rabdc = 0 .

The desired equation (A.12.20) follows now by adding the first two and sub-
tracting the last two equations, using (A.12.22).

It is natural to enquire about the number of independent components of a tensor
with the symmetries of a metric Riemann tensor in dimension n, the calculation
proceeds as follows: as Rabcd is symmetric under the exchange of ab with cd, and
anti-symmetric in each of these pairs, we can view it as a symmetric map from the
space of anti-symmetric tensor with two indices. Now, the space of anti-symmetric
tensors is N = n(n − 1)/2 dimensional, while the space of symmetric maps in
dimension N is N(N+1)/2 dimensional, so we obtain at most n(n−1)(n2−n+2)/8
free parameters. However, we need to take into account the cyclic identity:

Rabcd +Rbcad +Rcabd = 0 . (A.12.23)

If a = b this reads
Raacd +Racad +Rcaad = 0 ,

which has already been accounted for. Similarly if a = d we obtain

Rabca +Rbcaa +Rcaba = 0 ,

which holds in view of the previous identities. We conclude that the only new
identities which could possibly arise are those where abcd are all distinct. Clearly no
expression involving three such components of the Riemann tensor can be obtained
using the previous identities, so this is an independent constraint. In dimension four
(A.12.23) provides thus four candidate equations for another constraint, labeled by
d, but it is easily checked that they all coincide; this leads to 20 free parameters
at each space point. The reader is encouraged to finish the counting in higher
dimensions.

A.13 Geodesic deviation (Jacobi equation)

Suppose that we have a one parameter family of geodesics

γ(s, λ) (in local coordinates, (γα(s, λ))),

where s is the parameter along the geodesic, and λ is a parameter which dis-
tinguishes the geodesics. Set

Z(s, λ) :=
∂γ(s, λ)

∂λ
≡ ∂γα(s, λ)

∂λ
∂α ;
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for each λ this defines a vector field Z along γ(s, λ), which measures how nearby
geodesics deviate from each other, since, to first order, using a Taylor expansion,

γα(s, λ) = γα(s, λ0) + Zα(λ− λ0) +O((λ− λ0)2) .

To measure how a vector field W changes along s 7→ γ(s, λ), one introduces
the differential operator D/ds, defined as

DWµ

ds
:=

∂(Wµ ◦ γ)

∂s
+ Γµαβ γ̇

βWα (A.13.1)

= γ̇β
∂Wµ

∂xβ
+ Γµαβ γ̇

βWα (A.13.2)

= γ̇β∇βWµ . (A.13.3)

(It would perhaps be more logical to write DWµ

∂s in the current context, but
people never do that.) The last two lines only make sense if W is defined in
a whole neighbourhood of γ, but for the first it suffices that W (s) be defined
along s 7→ γ(s, λ). (One possible way of making sense of the last two lines is to
extend Wµ to any smooth vector field defined in a neighorhood of γµ(s, λ), and
note that the result is independent of the particular choice of extension because
the equation involves only derivatives tangential to s 7→ γµ(s, λ).)

Analogously one sets

DWµ

dλ
:=

∂(Wµ ◦ γ)

∂λ
+ Γµαβ∂λγ

βWα (A.13.4)

= ∂λγ
β ∂W

µ

∂xβ
+ Γµαβ∂λγ

βWα (A.13.5)

= Zβ∇βWµ . (A.13.6)

Note that since s→ γ(s, λ) is a geodesic we have from (A.13.1) and (A.13.3)

D2γµ

ds2
:=

Dγ̇µ

ds
=
∂2γµ

∂s2
+ Γµαβ γ̇

β γ̇α = 0 . (A.13.7)

(This is sometimes written as γ̇α∇αγ̇µ = 0, which is again an abuse of notation
since typically we will only know γ̇µ as a function of s, and so there is no such
thing as ∇αγ̇µ.) Furthermore,

DZµ

ds
=︸︷︷︸

(A.13.1)

∂2γµ

∂s∂λ
+ Γµαβ γ̇

β∂λγ
α =︸︷︷︸

(A.13.4)

Dγ̇µ

dλ
, (A.13.8)

(The abuse-of-notation derivation of the same formula proceeds as:

∇γ̇Zµ = γ̇ν∇νZµ = γ̇ν∇ν∂λγµ =︸︷︷︸
(A.13.3)

∂2γµ

∂s∂λ
+Γµαβ γ̇

β∂λγ
α =︸︷︷︸

(A.13.6)

Zβ∇β γ̇µ = ∇Z γ̇µ ,

(A.13.9)
which can then be written as

∇γ̇Z = ∇Z γ̇ .) (A.13.10)
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One can now repeat the calculation leading to (A.12.7) to obtain, for any vector
field W defined along γµ(s, λ),

D

ds

D

dλ
Wµ − D

dλ

D

ds
Wµ = Rαβδ

µγ̇αZβW δ . (A.13.11)

If Wµ = γ̇µ the second term at the left-hand-side is zero, and from D
dλ γ̇ = D

dsZ
we obtain

D2Zµ

ds2
(s) = Rαβσ

µγ̇αZβ γ̇σ . (A.13.12)

We have obtained an equation known as the Jacobi equation, or as the geodesic
deviation equation; in index-free notation:

D2Z

ds2
= R(γ̇, Z)γ̇ . (A.13.13)

Solutions of (A.13.13) are called Jacobi fields along γ.

A.14 Exterior algebra

A preferred class of tensors is provided by those that are totally antisymmetric
in all indices. Such k-covariant tensors are called k forms. They are of spe-
cial interest because they can naturally be used for integration. Furthermore,
on such tensors one can introduce a differentiation operation, called exterior
derivative, that does not require a connection.

Let αi, i = 1, . . . , k, be a collection of one-forms, the exterior product of the
αi’s is a k-form defined as

(α1 ∧ · · · ∧ αk)(X1, . . . , Xk) = det (αi(Xj)) , (A.14.1)

where det (αi(Xj)) denotes the determinant of the matrix obtained by applying
all the αi’s to all the vectors Xj . For example

dxa ∧ dxb(X,Y ) = XaY b − Y aXa .

Note that this equals dxa⊗dxb−dxb⊗dxa, which is twice the antisymmetrisation
dx[a⊗dxb]. More generally, if α is a totaly anti-symmetric tensor with coordinate
coefficients αa1...ak , then

α = αa1...akdx
a1 ⊗ · · · ⊗ dxak

= αa1...akdx
[a1 ⊗ · · · ⊗ dxak]

=
1

k!
αa1...akdx

a1 ∧ · · · ∧ dxak

=
∑

a1<···<ak

αa1...akdx
a1 ∧ · · · ∧ dxak .

This formula makes clear the factorial coefficients needed to go from tensor
components to the components in the dxa1 ∧ · · · ∧ dxak basis.
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A.15 Null hyperplanes and hypersurfaces

One of the objects that occur in Lorentzian geometry and which posses rather
disturbing properties are null hyperplanes and null hypersurfaces, and it ap-
pears useful to include a short discussion of those. Perhaps the most unusual
feature of such objects is that the direction normal is actually tangential as
well. Furthermore, because the normal has no natural normalization, there is
no natural measure induced on a null hypersurface by the ambient metric.

We start with some algebraic preliminaries. Let W be a real vector space,
and recall that its dual W ∗ is defined as the set of all linear maps from W to R in
the applications (in this work only vector spaces over the reals are relevant, but
the field makes no difference for the discussion below). To avoid unnecessary
complications we assume that W is finite dimensional. It is then standard that
W ∗ has the same dimension as W .

We suppose that W is equipped with a a) bilinear, b) symmetric, and c)
non-degenerate form q. Thus

q : W →W

satisfies

a) q(λX + µY,Z) = λq(X,Z) + µq(Y, Z) , b) q(X,Y ) = q(Y,X) ,

and we also have the implication

c) ∀Y ∈W q(X,Y ) = 0 =⇒ X = 0 . (A.15.1)

(Strictly speaking, we should have indicated linearity with respect to the second
variable in a) as well, but this property follows from a) and b) as above). By an
abuse of terminology, we will call q a scalar product ; note that standard algebra
textbooks often add the condition of positive-definiteness to the definition of
scalar product, which we do not include here.

Let V ⊂W be a vector subspace of W . The annihilator V 0 of W is defined
as the set of linear forms on W which vanish on V :

V 0 := {α ∈W ∗ : ∀Y ∈ V α(Y ) = 0} ⊂W ∗ .

V 0 is obviously a linear subspace of W ∗.
Because q non-degenerate, it defines a linear isomorphism, denoted by [,

between W and W ∗ by the formula:

X[(Y ) = g(X,Y ) .

Indeed, the map X 7→ X[ is clearly linear. Next, it has no kernel by (A.15.1).
Since the dimensions of W and W ∗ are the same, it must be an isomorphism.
The inverse map is denoted by ]. Thus, by definition we have

g(α], Y ) = α(Y ) .

The map [ is nothing but “the lowering of the index on a vector using the metric
q”, while ] is the “raising of the index on a one-form using the inverse metric”.

For further purposes it is useful to recall the standard fact:
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Proposition A.15.1

dimV + dimV 0 = dimW .

Proof: Let {ei}i=1,...,dimV be any basis of V , we can complete {ei} to a basis
{ei, fa}, with a = 1, . . . ,dimW − dimV , of W . Let {e∗i , f∗a} be the dual basis
of W ∗. It is straightforward to check that V 0 is spanned by {f∗a}, which gives
the result. 2

The quadratic form q defines the notion of orthogonality:

V ⊥ := {Y ∈W : ∀X ∈ V g(X,Y ) = 0} .

A chase through the definitions above shows that

V ⊥ = (V 0)] .

Proposition A.15.1 implies:

Proposition A.15.2

dimV + dimV ⊥ = dimW .

This implies, again regardless of signature:

Proposition A.15.3

(dimV ⊥)⊥ = V .

Proof: The inclusion (dimV ⊥)⊥ ⊃ V is obvious from the definitions. The
equality follows now because both spaces have the same dimension, as a conse-
quence of Proposition (A.15.2). 2

Now,

X ∈ V ∩ V ⊥ =⇒ q(X,X) = 0 , (A.15.2)

so that X vanishes if q is positive- or negative-definite, leading to dimV ∩
dimV ⊥ = {0} in those cases. However, this does not have to be the case
anymore for non-definite scalar products q.

A vector subspace V of W is called a hyperplane if

dimV = dimW − 1 .

Proposition A.15.2 implies then

dimV ⊥ = 1 ,

regardless of the signature of q. Thus, given a hyperplane V there exists a
vector w such that

V ⊥ = Rw .
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If q is Lorentzian, we say that

V is


spacelike if w is timelike;
timelike if w is spacelike;
null if w is null.

An argument based e.g. on Gram-Schmidt orthonormalization shows that if V is
spacelike, then the scalar product defined on V by restriction is positive-definite;
similarly if V is timelike, then the resulting scalar product is Lorentzian. The
last case, of a null V , leads to a degenerate induced scalar product. In fact, we
claim that

V is null if and only if V contains its normal. . (A.15.3)

To see (A.15.3), suppose that V ⊥ = Rw, with w null. Since g(w,w) = 0 we
have w ∈ (Rw)⊥, and from Proposition A.15.3

w ∈ (Rw)⊥ = (V ⊥)⊥ = V .

Since V does not contain its normal in the remaining cases, the equivalence is
established.

A hypersurface is N ⊂M called null if at every p ∈ N the tangent space
TpN is a null subspace of TpM . So (A.15.2) shows that a normal to a null
hypersurface N is also tangent to N .

A.16 Moving frames

A formalism which is very convenient for practical calculations is that of moving
frames; it also plays a key role when considering spinors. By definition, a
moving frame is a (locally defined) field of bases {ea} of TM such that the
scalar products

gab := g(ea, eb) (A.16.1)

are point independent. In most standard applications one assumes that the ea’s
form an orthonormal basis, so that gab is a diagonal matrix with plus and minus
ones on the diagonal. However, it is sometimes convenient to allow other such
frames, e.g. with isotropic vectors being members of the frame.

It is customary to denote by ωabc the associated connection coefficients:

ωabc := θa(∇eceb) ⇐⇒ ∇Xeb = ωabcX
cea , (A.16.2)

where, as elsewhere, {θa(p)} is a basis of T ∗pM dual to {ea(p)} ⊂ TpM ; we will
refer to θa as a coframe. The connection one forms ωab are defined as

ωab(X) := θa(∇Xeb) ⇐⇒ ∇Xeb = ωab(X)ea ; . (A.16.3)

As always we use the metric to raise and lower indices, even though the ωabc’s
do not form a tensor, so that

ωabc := gadω
e
bc , ωab := gaeω

e
b . (A.16.4)
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When ∇ is metric compatible, the ωab’s are anti-antisymmetric: indeed, as the
gab’s are point independent, for any vector field X we have

0 = X(gab) = X(g(ea, eb)) = g(∇Xea, eb) + g(ea,∇Xeb)
= g(ωca(X)ec, eb) + g(ea, ω

d
b(X)ed)

= gcbω
c
a(X) + gadω

d
b(X)

= ωba(X) + ωab(X) .

Hence
ωab = −ωba ⇐⇒ ωabc = −ωbac . (A.16.5)

One can obtain a formula for the ωab’s in terms of Christoffels, the frame
vectors and their derivatives: In order to see this, we note that

g(ea,∇eceb) = g(ea, ω
d
bced) = gadω

d
bc = ωabc . (A.16.6)

Rewritten the other way round this gives an alternative equation for the ω’s
with all indices down:

ωabc = g(ea,∇eceb) ⇐⇒ ωab(X) = g(ea,∇Xeb) . (A.16.7)

Then, writing
ea = ea

µ∂µ ,

we find

ωabc = g(ea
µ∂µ, ec

λ∇λeb)
= gµσea

µec
λ(∂λeb

σ + Γσλνeb
ν) . (A.16.8)

Next, it turns out that we can calculate the ωab’s in terms of the Lie brackets
of the vector fields ea, without having to calculate the Christoffel symbols. This
shouldn’t be too surprising, since an ON frame defines the metric uniquely. If
∇ has no torsion, from (A.16.7) we find

ωabc − ωacb = g(ea,∇eceb −∇ebec) = g(ea, [ec, eb]) .

We can now carry-out the usual cyclic permutations calculation to obtain

ωabc − ωacb = g(ea, [ec, eb]) ,

−(ωbca − ωbac) = −g(eb, [ea, ec]) ,

−(ωcab − ωcba) = −g(ec, [eb, ea]) .

So, if the connection is the Levi-Civita connection, summing the three equations
and using (A.16.5) leads to

ωabc =
1

2

(
g(ea, [ec, eb])− g(eb, [ea, ec])− g(ec, [eb, ea])

)
. (A.16.9)

Equations (A.16.8)-(A.16.9) provide explicit expressions for the ω’s. While it is
useful to know that there are such expressions, and while those expressions are
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useful to estimate things for PDE purposes, they are rarely used for practical
calculations; see Example A.16.2 for more comments about that last issue.

It turns out that one can obtain a simple expression for the torsion of ω
using exterior differentiation. Recall that if α is a one-form, then its exterior
derivative dα can be defined using the formula

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ]) . (A.16.10)

We set

T a(X,Y ) := θa(T (X,Y )) ,

and using (A.16.10) together with the definition (A.9.16) of the torsion tensor
T we calculate as follows:

T a(X,Y ) = θa(∇XY −∇YX − [X,Y ])

= X(Y a) + ωab(X)Y b − Y (Xa)− ωab(Y )Xb − θa([X,Y ])

= X(θa(Y ))− Y (θa(X))− θa([X,Y ]) + ωab(X)θb(Y )− ωab(Y )θb(X)

= dθa(X,Y ) + (ωab ∧ θb)(X,Y ) .

It follows that

T a = dθa + ωab ∧ θb . (A.16.11)

In particular when the torsion vanishes we obtain the so-called Cartan’s first
structure equation

dθa + ωab ∧ θb = 0 . (A.16.12)

Example A.16.1 As a simple example, we consider a two-dimensional metric of
the form

g = dx2 + e2fdy2 , (A.16.13)

where f could possibly depend upon x and y. A natural frame is given by

θ1 = dx , θ2 = efdy .

The first Cartan structure equations read

0 = dθ1︸︷︷︸
0

+ω1
b ∧ θb = ω1

2 ∧ θ2 ,

since ω1
1 = ω11 = 0 by antisymmetry, and

0 = dθ2︸︷︷︸
ef∂xfdx∧dy

+ω1
b ∧ θb = ∂xfθ

1 ∧ θ2 + ω2
1 ∧ θ1 .

It should then be clear that both equations can be solved by choosing ω12 propor-
tional to θ2, and such an ansatz leads to

ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy . (A.16.14)
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Example A.16.2 As another example of the moving frame technique we consider
(the most general) three-dimensional spherically symmetric metric

g = e2β(r)dr2 + e2γ(r)dθ2 + e2γ(r) sin2 θdϕ2 . (A.16.15)

There is an obvious choice of ON coframe for g given by

θ1 = eβ(r)dr , θ2 = eγ(r)dθ , θ3 = eγ(r) sin θdϕ , (A.16.16)

leading to
g = θ1 ⊗ θ1 + θ2 ⊗ θ2 + θ3 ⊗ θ3 ,

so that the frame ea dual to the θa’s will be ON, as desired:

gab = g(ea, eb) = diag(1, 1, 1) .

The idea of the calculation which we are about to do is the following: there is only
one connection which is compatible with the metric, and which is torsion free. If we
find a set of one forms ωab which exhibit the properties just mentioned, then they
have to be the connection forms of the Levi-Civita connection. As shown in the
calculation leading to (A.16.5), the compatibility with the metric will be ensured if
we require

ω11 = ω22 = ω33 = 0 ,

ω12 = −ω21 , ω13 = −ω31 , ω23 = −ω32 .

Next, we have the equations for the vanishing of torsion:

0 = dθ1 = − ω1
1︸︷︷︸

=0

θ1 − ω1
2θ

2 − ω1
3θ

3

= −ω1
2θ

2 − ω1
3θ

3 ,

dθ2 = γ′eγdr ∧ dθ = γ′e−βθ1 ∧ θ2

= − ω2
1︸︷︷︸

=−ω1
2

θ1 − ω2
2︸︷︷︸

=0

θ2 − ω2
3θ

3

= ω1
2θ

1 − ω2
3θ

3 ,

dθ3 = γ′eγ sin θ dr ∧ dϕ+ eγ cos θ dθ ∧ dϕ = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3

= − ω3
1︸︷︷︸

=−ω1
3

θ1 − ω3
2︸︷︷︸

=−ω2
3

θ2 − ω3
3︸︷︷︸

=0

θ3

= ω1
3θ

1 + ω2
3θ

2 .

Summarising,

−ω1
2θ

2 − ω1
3θ

3 = 0 ,

ω1
2θ

1 − ω2
3θ

3 = γ′e−βθ1 ∧ θ2 ,

ω1
3θ

1 + ω2
3θ

2 = γ′e−βθ1 ∧ θ3 + e−γ cot θ θ2 ∧ θ3 .

It should be clear from the first and second line that an ω1
2 proportional to θ2 should

do the job; similarly from the first and third line one sees that an ω1
3 proportional

to θ3 should work. It is then easy to find the relevant coefficient, as well as to find
ω2

3:

ω1
2 = −γ′e−βθ2 = −γ′e−β+γdθ , (A.16.17a)

ω1
3 = −γ′e−βθ3 = −γ′e−β+γ sin θ dϕ , (A.16.17b)

ω2
3 = −e−γ cot θ θ3 = − cos θ dϕ . (A.16.17c)
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It is convenient to define curvature two-forms:

Ωa
b = Rabcdθ

c ⊗ θd =
1

2
Rabcdθ

c ∧ θd . (A.16.18)

The second Cartan structure equation then reads

Ωa
b = dωab + ωac ∧ ωcb . (A.16.19)

This identity is easily verified using (A.16.10):

Ωa
b(X,Y ) =

1

2
Rabcd θ

c ∧ θd(X,Y )︸ ︷︷ ︸
=XcY d−XdY c

= RabcdX
cY d

= θa(∇X∇Y eb −∇Y∇Xeb −∇[X,Y ]eb)

= θa(∇X(ωcb(Y )ec)−∇Y (ωcb(X)ec)− ωcb([X,Y ])ec)

= θa
(
X(ωcb(Y ))ec + ωcb(Y )∇Xec

−Y (ωcb(X))ec − ωcb(X)∇Y ec − ωcb([X,Y ])ec

)
= X(ωab(Y )) + ωcb(Y )ωac(X)

−Y (ωab(X))− ωcb(X)ωac(Y )− ωab([X,Y ])

= X(ωab(Y ))− Y (ωab(X))− ωab([X,Y ])︸ ︷︷ ︸
=dωab(X,Y )

+ωac(X)ωcb(Y )− ωac(Y )ωcb(X)

= (dωab + ωac ∧ ωcb)(X,Y ) .

Equation (A.16.19) provides an efficient way of calculating the curvature tensor
of any metric.

Example A.16.1 continued We have seen that the connection one-forms for the
metric

g = dx2 + e2fdy2 (A.16.20)

read
ω12 = −ω21 = −∂xf θ2 = −∂x(ef ) dy .

By symmetry the only non-vanishing curvature two-forms are Ω12 = −Ω21. From
(A.16.19) we find

Ω12 = dω12 + ω1b ∧ ωb2︸ ︷︷ ︸
=ω12∧ω2

2=0

= −∂2
x(ef ) dx ∧ dy = −e−f∂2

x(ef ) θ1 ∧ θ2 .

We conclude that
R1212 = −e−f∂2

x(ef ) . (A.16.21)

(Compare Example A.12.2, p. 92.) For instance, if g is the unit round metric on
the two-sphere, then f = sinx, and R1212 = 1. If f = sinhx, then g is the canonical
metric on hyperbolic space, and R1212 = −1. Finally, the function f = coshx
defines a hyperbolic wormhole, with again R1212 = −1.
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Example A.16.2 continued: From (A.16.17) we find:

Ω1
2 = dω1

2 + ω1
1︸︷︷︸

=0

∧ω1
2 + ω1

2 ∧ ω2
2︸︷︷︸

=0

+ω1
3 ∧ ω3

2︸ ︷︷ ︸
∼θ3∧θ3=0

= −d(γ′e−β+γdθ)

= −(γ′e−β+γ)′dr ∧ dθ
= −(γ′e−β+γ)′e−β−γθ1 ∧ θ2

=
∑
a<b

R1
2abθ

a ∧ θb ,

which shows that the only non-trivial coefficient (up to permutations) with the pair
12 in the first two slots is

R1
212 = −(γ′e−β+γ)′e−β−γ . (A.16.22)

A similar calculation, or arguing by symmetry, leads to

R1
313 = −(γ′e−β+γ)′e−β−γ . (A.16.23)

Finally,

Ω2
3 = dω2

3 + ω2
1 ∧ ω1

3 + ω2
2︸︷︷︸

=0

∧ω2
3 + ω2

3 ∧ ω3
3︸︷︷︸

=0

= −d(cos θ dϕ) + (γ′e−βθ2) ∧ (−γ′e−βθ3)

= (e−2γ − (γ′)2e−2β)θ2 ∧ θ3 ,

yielding
R2

323 = e−2γ − (γ′)2e−2β . (A.16.24)

The curvature scalar can easily be calculated now to be

R = Rij ij = 2(R12
12 +R13

13 +R23
23)

= −4(γ′e−β+γ)′e−β−γ + 2(e−2γ − (γ′)2e−2β) . (A.16.25)



108APPENDIX A. INTRODUCTION TO PSEUDO-RIEMANNIANGEOMETRY



Appendix B

Weyl connections, conformal
rescalings of the metric

Consider a metric g̃ related to g by a conformal rescaling:

g̃ij = ϕ`gij ⇐⇒ g̃ij = ϕ−`gij , (B.0.1)

where ϕ is a function and ` is a real number. This gives the following transfor-
mation law for the Christoffel symbols:

Γ̃ijk =
1

2
g̃im(∂j g̃km + ∂kg̃jm − ∂mg̃jk)

=
1

2
ϕ−`gim(∂j(ϕ

`g̃km) + ∂k(ϕ
`g̃jm)− ∂m(ϕ`gjk))

= Γijk +
`

2ϕ
(δik∂jϕ+ δij∂kϕ− gjkDiϕ) , (B.0.2)

where D denotes the covariant derivative of g. Equation (B.0.2) can be rewrit-
ten as

D̃XY = DXY + C(X,Y ) , (B.0.3)

with

C(X,Y ) =
`

2ϕ

(
Y (ϕ)X +X(ϕ)Y − g(X,Y )Dϕ

)
(B.0.4a)

=
`

2ϕ

(
Y (ϕ)X +X(ϕ)Y − g̃(X,Y )D̃ϕ

)
. (B.0.4b)

B.1 The curvature

Let R̃iem denote the curvature tensor of a connection of the form (B.0.3); from
(B.0.4) we obtain

R̃(X,Y )Z =
(
D̃XD̃Y Z −X ↔ Y

)
− D̃[X,Y ]Z

=
(
DX(DY Z + C(Y,Z)) + C(X, (DY Z + C(Y, Z))−X ↔ Y

)
109
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−D[X,Y ]Z − C( [X,Y ]︸ ︷︷ ︸
=DXY−DYX

, Z)

= R(X,Y )Z +
(

(DXC)(Y,Z) + C(DXY,Z) + C(Y,DXZ)

+C(X,DY Z) + C(X,C(Y, Z))−X ↔ Y
)
− C(DXY,Z) + C(DYX,Z)

= R(X,Y )Z +
(

(DXC)(Y,Z) + C(X,C(Y,Z))−X ↔ Y
)
.

In index notation this can be rewritten as

R̃ijk` = Rijk` + Ci`j;k − Cikj;` + CikmC
m
j` − Ci`mCmjk . (B.1.1)

B.1.1 The Weyl conformal connection

There is a natural generalisation of (B.0.3)-(B.0.4) to Weyl conformal connec-
tions, obtained by the replacement

`∂aϕ

2ϕ
−→ fa (B.1.2)

there, where fadx
a is an arbitrary one-form, not necessarily exact (compare [71]).

In other words, one sets

Cijk = δijfk + δikfj − gi`f` gjk . (B.1.3)

Since Cijk is symmetric in j and k, the connection D̃ is always torsion-free.

Inserting into (B.1.1) one finds the following formula for the curvature tensor
of a Weyl connection

R̃ijk` = Rijk`+2
(
fj;[kδ

i
`] +δ

i
jf[`;k]−f i;[kg`]j+δi[kf`]fj−gj[kf`]f

i−δi[kg`]jfmf
m
)
.

(B.1.4)
Contracting over i and k one obtains the Ricci tensor of D̃

R̃j` := Ric(g̃)ij

= Rj` + (1− n)fj;` + f`;j − f i;igj` + (n− 2)(fjf` − gj`fmfm) .

(B.1.5)

(Note that R̃j` is not symmetric in general.) We calculate the Ricci scalar of
the Weyl connection by taking the trace of R̃j` using the metric g:

gj`R̃j` = R− (n− 1)(2f i;i + (n− 2)fmf
m) (B.1.6)

(the reader is warned that this is not the curvature scalar of the metric g̃ when
fa is expressed in terms of ϕ using (B.1.2), see (B.1.14) below).

For n 6= 2 it is convenient to introduce the tensor

L̃ij =
1

n− 2

(
R̃(ij) −

n− 2

n
R̃[ij] −

1

2 (n− 1)
gij g

klR̃kl

)
. (B.1.7)
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which is a natural generalisation of the Schouten tensor Aij associated to a
metric g:

Aij =
1

n− 2

(
Rij −

1

2(n− 1)
gijg

k`Rk`

)
. (B.1.8)

From (B.1.5)-(B.1.8) one finds

Di fj − fi fj +
1

2
gij fk f

k = Aij − L̃ij . (B.1.9)

B.1.2 The Weyl tensor

Using (B.1.9) to eliminate the derivatives of fi from (B.1.4) one obtains

R̃i jk` = 2{δi[kL̃`]j − δ
i
jL̃[k`] − gj[kL̃`]i}+ Cijk` , (B.1.10)

where the Weyl tensor Cijk` is defined as

Cijkl := Rijkl −
1

n− 2
(gikRjl − gilRjk − gjkRil + gjlRik)

+
1

(n− 1)(n− 2)
R(gikgjl − gilgjk)

= Rijkl −Aikgjl +Ailgjk +Ajkgil −Ajlgik . (B.1.11)

The Weyl tensor has the important property that all its traces vanish, in par-
ticular

Cijik = 0 .

B.1.3 The Ricci tensor and the curvature scalar

We now return to (B.0.4); in this case R̃ij is the Ricci tensor of the metric g̃ij ,
hence L̃ij = Ãij , the Schouten tensor of g̃ij . Equation (B.1.10) is the statement
that Cijk` is invariant under conformal changes of the metric:

C̃ijk` = Cijk` .

Next, (B.1.9) can be viewed as a transformation law of the Schouten tensor
under conformal changes. Indeed, expressing fa in terms of ϕ by inverting
(B.1.2), Equation (B.1.9) can be rewritten as

Ãij = Aij −
`

2ϕ
DiDjϕ+

`

4ϕ2

(
(2 + `)DiϕDjϕ−

`

2
gijDkϕD

kϕ
)
, (B.1.12)

which does not have any dimension-dependent coefficients, and which simplifies
somewhat when ` = −2. Similarly, (B.1.5) gives

R̃ij = Rij −
(n− 2)`

2ϕ
DiDjϕ+

(n− 2)`(`+ 2)

4ϕ2
DiϕDjϕ−

`

2ϕ
∆gϕgij

−(n− 2)`2 − 2`

4ϕ2
DkϕDkϕgij . (B.1.13)
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Taking a g̃–trace one obtains

R̃ := g̃ijR̃ij = ϕ−`gijR̃ij

= ϕ−`
(
R− (n− 1)`

ϕ
∆gϕ−

(n− 1)` {(n− 2)`− 4}
4ϕ2

DiϕDiϕ

)
.

(B.1.14)

For n 6= 2 a very convenient choice is

(n− 2)` = 4 , (B.1.15)

leading to

g̃ij = ϕ
4

n−2 gij , R̃ = ϕ−
4

n−2

(
R− 4(n− 1)

(n− 2)ϕ
∆gϕ

)
. (B.1.16)

An immediate useful consequence of (B.1.16) is the following: if R = 0 and if ϕ
is g–harmonic (i.e., ∆gϕ = 0), then g̃ also has vanishing scalar curvature, and
ϕ is g̃–harmonic.

For n = 2 a clever choice is to take ` = 1, and set ϕ = eu, which leads to

g̃ij = eugij , R̃ = e−u (R−∆gu) . (B.1.17)

For the record we note the metric version of (B.1.10),

Rijk` = 2{δi[kA`]j − gj[kA`]
i}+ Cijk` . (B.1.18)

B.2 The wave equation

Under a conformal transformation as in (B.1.16) we have the following trans-
formation law for the Laplacian acting on functions:

∆g̃f =
1√

det g̃ij
∂k(
√

det g̃ij g̃
k`∂`f)

=
ϕ−

2n
n−2√

det gij
∂k

(
ϕ

2n
n−2
− 4
n−2︸ ︷︷ ︸

ϕ2

√
det gijg

k`∂`f

)

= ϕ−
4

n−2 (∆gf + 2ϕ−1gk`∂kϕ∂`f) .

This implies(
∆g̃ −

(n− 2)

4(n− 1)
R̃

)
f

= ϕ−
4

n−2

(
∆gf + 2ϕ−1gk`∂kϕ∂`f −

(n− 2)

4(n− 1)
Rf + ϕ−1f∆gϕ

)
= ϕ−

4
n−2
−1

(
∆g(fϕ)− (n− 2)

4(n− 1)
Rfϕ

)
.
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Hence the operator

∆g −
(n− 2)

4(n− 1)
R

is conformally-covariant: if g̃ij = ϕ
4

n−2 gij , then(
∆g̃ −

(n− 2)

4(n− 1)
R̃

)
f = ϕ−

n+2
n−2

(
∆g −

(n− 2)

4(n− 1)
R

)
fϕ ; (B.2.1)

equivalently(
∆g −

(n− 2)

4(n− 1)
R

)
h = ϕ

n+2
n−2

(
∆g̃ −

(n− 2)

4(n− 1)
R̃

)(
h

ϕ

)
. (B.2.2)

B.3 The Cotton tensor

Given any pseudo-Riemannian metric gij , the Cotton tensor Bijk is defined as

Bijk = Ai[j;k] , (B.3.1)

where Aij is the Schouten tensor (B.1.8). The tensor Bijk has the following
properties

Bijk = Bi[jk]︸ ︷︷ ︸
(a)

, Bi
ik︸︷︷︸

(b)

= 0 , B[ijk]︸ ︷︷ ︸
(c)

= 0 , (B.3.2)

which, from a purely algebraic point of view, allows a five-dimensional vector
space of such tensors at each space point. (The first property in (B.3.2) follows
immediately from the definition; similarly the last one is obvious in view of the
symmetry of Aij in its indices. The middle-one coincides with the contracted
Bianchi identity, Ri

j
;j = 1

2R;j .)
The Cotton tensor further satisfies the differential identity

Bi[jk;l] = 0 . (B.3.3)

One can think of the Cotton tensor as the three-dimensional counterpart
of the Weyl tensor. Indeed, the Weyl tensor vanishes identically in dimension
three so it is not of much interest there. On the other hand, B transforms
homogeneously under conformal transformation when n = 3. Indeed,

In dimension three, an object equivalent to the Cotton tensor is the tensor

Hij =
1

2
εkliBjkl . (B.3.4)

The tensor Hij is symmetric, tracefree and divergence-free. Indeed, the van-
ishing of its trace is precisely (B.3.2)(c). The vanishing of the divergence is
(B.3.3). To see the symmetry, we calculate as follows

H12 =︸︷︷︸
def.

B223 = B113 +B223 +B333︸ ︷︷ ︸
=0 by (B.3.2)(b)

−B113 − B333︸︷︷︸
=0 by (B.3.2)(a)

= − B113︸︷︷︸
=−B131 by (B.3.2)(a)

=︸︷︷︸
def.

H21 .

Finally, one readily verifies the inversion formula

Bijk = εjk
`Hi` . (B.3.5)
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B.4 The Bach tensor

The Bach tensor is defined by the formula

Bab = DcDdCabcd +
1

2
RcdCacbd (B.4.1)

Its interest arises from the fact that it is conformally covariant in four dimen-
sions,

gij → ω2gij =⇒ Bij → ω−2Bij .

Whatever the dimension, Bij vanishes if g is Einstein. This follows from the
fact that DdCabcd vanishes for Einstein metrics by the Bianchi identity, while
the second term in (B.4.1) becomes a trace in the second and third index, which
is zero for the Weyl tensor.

B.5 The Graham-Hirachi theorem, and the Fefferman-
Graham obstruction tensor

B.5.1 The Fefferman-Graham tensor

Let, as elsewhere, n+1 denote space-time dimension, with n odd. The Fefferman-
Graham tensor H is a conformally covariant tensor, built out of the metric g
and its derivatives up to order n+ 1, of the form

H = (∇∗∇)
n+1

2
−2[∇∗∇(A) +∇2(trA)] + Fn , (B.5.1)

where A is the Schouten tensor (B.1.8), and where Fn is a tensor built out of
lower order derivatives of the metric (see, e.g., [79], where the notation O is
used in place of H). It turns out that Fn involves only derivatives of the metric
up to order n − 1: this is an easy consequence of Equation (2.4) in [79], using
the fact that odd-power coefficients of the expansion of the metric gx in [79,
Equation (2.3)] vanish. (For n = 3, 5 this can also be verified by inspection of
the explicit formulae for F3 and F5 given in [79].)

The system of equations

H = 0 (B.5.2)

will be called the Anderson-Fefferman-Graham (AFG) equations. It has the
following properties [79]:

1. The system (B.5.2) is conformally invariant: if g is a solution, so is ϕ2g,
for any positive function ϕ.

2. If g is conformal to an Einstein metric, then (B.5.2) holds.

3. H is trace-free.

4. H is divergence-free.
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The tensor H was originally discovered by Fefferman and Graham [63] as an
obstruction to the existence of a formal power series expansion for conformally
compactifiable Einstein metrics, with conformal boundary equipped with the
conformal equivalence class [g] of g. This geometric interpretation is irrelevant
from our point of view, as here we are interested in (B.5.2) as an equation on
its own.

B.5.2 The Graham-Hirachi theorem

It is of interest to classify all conformally-covariant tensors which are polynomial
in the metric, its inverse, and in the derivatives of the metric. Such tensors will
be called natural. Now, one may construct further covariants from known ones
by taking tensor products and contracting. A tensor will be called irreducible
if it cannot be constructed in that fashion in a non-trivial way.

The following theorem of Hirachi-Graham shows that up to quadratic and
higher terms in curvature, the Weyl tensor, or the Cotton tensor in dimension
3, and the obstruction tensor are the only irreducible conformally invariant
tensors:

Theorem B.5.1 (Graham-Hirachi [79]) A conformally covariant irreducible nat-
ural tensor of n-dimensional oriented Riemannian manifolds is equivalent mod-
ulo a conformally covariant natural tensor of degree at least 2 in curvature with
a multiple of one of the following:

1. n = 3: the Cotton tensor Cijk = Aij;k −Aik;j

2. n = 4: the self-dual or anti-self dual Weyl tensor C±ijkl or the Bach tensor
Bij = Oij

3. n ≥ 5 odd: the Weyl tensor Cijkl

4. n ≥ 6 even: the Weyl tensor Cijkl or the obstruction tensor Oij

B.6 Frame coefficients, Dirac operators

In order to calculate the transformation law of the connection coefficients, we
will consider a conformal rescaling of the form ḡij = e2ugij . Let θ̄i be an
orthonormal coframe for ḡ, then

θi := e−uθ̄i

is an orthonormal coframe for ḡ. We claim that:

ω̄ij(ek) = ωij(ek)− ei(u)gjk + ej(u)gik , (B.6.1)

equivalently
ω̄ij = ω̄ij(ek)θ

k = ωij − ei(u)θj + ej(u)θi . (B.6.2)

To verify this equation, notice that ω̄ij as given by this equation is anti-
symmetric in i and j; further, it is straightforward to check that

dθ̄i + ω̄ij ∧ θ̄j = 0 ,
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and (B.6.1) follows from uniqueness of ω̄ij .
Let ei be an orthonormal frame for g. Recall that the Dirac operator Dirac

is defined by the formula

Diracψ := γk∇ekψ = γk(ek(ψ)− 1

4
ωijkγ

iγj)ψ .

The corresponding Dirac operator Dirac associated to the metric ḡ reads

Diracψ := γk∇̄ēkψ = γk(ēk(ψ)− 1

4
ω̄ijkγ

iγj)ψ .

Using (B.6.1) one finds

Diracψ = e−
(n+1)u

2 Dirac(e
(n−1)u

2 ψ) . (B.6.3)

B.7 Non-characteristic hypersurfaces

Let S be a non-characteristic hypersurface in M , under (B.0.1) the unit normal
to S transforms as

ñi = ϕ−`/2ni ⇐⇒ ñi = ϕ`/2ni . (B.7.1)

The projection tensor P defined in (1.3.4) is invariant under (B.0.1),

P̃ = P .

From the definition (1.3.5) of the Weingarten map we obtain, for X ∈ TS ,

B̃(X) = P̃ (D̃X ñ) = P
(
DX(ϕ−`/2n) + C(X, ñ)

)
= P

(
X(ϕ−`/2)n+ ϕ−`/2DXn+

`

2ϕ

(
ñ(ϕ)X +X(ϕ)ñ− g̃(X, ñ)︸ ︷︷ ︸

0

D̃ϕ
)

= P
(
ϕ−`/2DXn+

`

2ϕ
ñ(ϕ)X

)
= ϕ−`/2B(X) +

`

2ϕ
ñ(ϕ)X .

The definition (1.3.6) of the extrinsic curvature tensor (second fundamental
form) K leads to, for X,Y ∈ TS ,

K̃(X,Y ) = g̃
(
B̃(X), Y

)
= g̃
(
ϕ−`/2B(X) +

`

2ϕ
ñ(ϕ)X,Y

)
,

which can be rewritten in the following three equivalent forms

K̃(X,Y ) = ϕ`/2K(X,Y ) +
`ñ(ϕ)

2ϕ
g̃(X,Y ) (B.7.2a)

= ϕ`/2K(X,Y ) +
`ϕ(−`−2)/2n(ϕ)

2
g̃(X,Y ) (B.7.2b)

= ϕ`/2K(X,Y ) +
`ϕ(`−2)/2n(ϕ)

2
g(X,Y ) . (B.7.2c)
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[27] N.T. Bishop, R. Gómez, L. Lehner, M. Maharaj, and J. Winicour, Char-
acteristic initial data for a star orbiting a black hole, Phys. Rev. D 72
(2005), 024002, 16. MR MR2171948 (2006d:83051)

[28] J.-P. Bourguignon, D.G. Ebin, and J.E. Marsden, Sur le noyau des
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(2008), 639–654, arXiv:0710.3365 [gr-qc]. MR 2413198 (2009g:53051)

[56] J. Corvino, Scalar curvature deformation and a gluing construction for the
Einstein constraint equations, Commun. Math. Phys. 214 (2000), 137–
189. MR MR1794269 (2002b:53050)

[57] , On the existence and stability of the Penrose compactification,
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[68] Y. Fourès-Bruhat, Théorème d’existence pour certains systèmes
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